Circle 4

Over-Vectorizing

We skirted past Plutus, the fierce wolf with a swollen face, down into the fourth
Circle. Here we found the lustful.

It is a good thing to want to vectorize when there is no effective way to do
so. It is a bad thing to attempt it anyway.

A common reflex is to use a function in the apply family. This is not vector-
ization, it is loop-hiding. The apply function has a for loop in its definition.
The lapply function buries the loop, but execution times tend to be roughly
equal to an explicit for loop. (Confusion over this is understandable, as there
is a significant difference in execution speed with at least some versions of S+.)
Table 4.1 summarizes the uses of the apply family of functions.

Base your decision of using an apply function on Uwe’s Maxim (page 20).
The issue is of human time rather than silicon chip time. Human time can be
wasted by taking longer to write the code, and (often much more importantly)
by taking more time to understand subsequently what it does.

A command applying a complicated function is unlikely to pass the test.

Table 4.1: The apply family of functions.

function input output comment

apply matrix or array vector or array or list
lapply list or vector list
sapply list or vector vector or matrix or list simplify
vapply list or vector vector or matrix or list safer simplify
tapply data, categories array or list ragged
mapply lists and/or vectors vector or matrix or list multiple
rapply list vector or list recursive
eapply environment list

dendrapply dendogram dendogram

rollapply data similar to input package zoo

24



CIRCLE 4. OVER-VECTORIZING

Figure 4.1: The panderers and seducers and the flatterers by Sandro Botticelli.

Use an explicit for loop when each iteration is a non-trivial task. But a simple
loop can be more clearly and compactly expressed using an apply function.

There is at least one exception to this rule. We will see in Circle 8.1.56 that
if the result will be a list and some of the components can be NULL, then a for
loop is trouble (big trouble) and lapply gives the expected answer.

The tapply function applies a function to each bit of a partition of the data.
Alternatives to tapply are by for data frames, and aggregate for time series
and data frames. If you have a substantial amount of data and speed is an issue,
then data.table may be a good solution.

Another approach to over-vectorizing is to use too much memory in the pro-
cess. The outer function is a wonderful mechanism to vectorize some problems.
It is also subject to using a lot of memory in the process.

Suppose that we want to find all of the sets of three positive integers that
sum to 6, where the order matters. (This is related to partitions in number
theory.) We can use outer and which:

the.seq <- 1:4
which(outer (outer(the.seq, the.seq, ’+’), the.seq, ’+’) == 6,

arr.ind=TRUE)

This command is nicely vectorized, and a reasonable solution to this particular

25



CIRCLE 4. OVER-VECTORIZING

problem. However, with larger problems this could easily eat all memory on a
machine.

Suppose we have a data frame and we want to change the missing values to
zero. Then we can do that in a perfectly vectorized manner:

x[is.na(x)] <- 0

But if x is large, then this may take a lot of memory. If—as is common—the
number of rows is much larger than the number of columns, then a more memory
efficient method is:

for(i in 1:ncol(x)) x[is.na(x[,i]), il <- 0

Note that “large” is a relative term; it is usefully relative to the amount of
available memory on your machine. Also note that memory efficiency can also
be time efficiency if the inefficient approach causes swapping.

One more comment: if you really want to change NAs to 0, perhaps you
should rethink what you are doing—the new data are fictional.

It is not unusual for there to be a tradeoff between space and time.

Beware the dangers of premature optimization of your code. Your first duty
is to create clear, correct code. Only consider optimizing your code when:

e Your code is debugged and stable.

e Optimization is likely to make a significant impact. Spending an hour or
two to save a millisecond a month is not best practice.

26



