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1 Overview

In this supplementary material, we present extensive experimental evaluation and algo-
rithmic details to complement the manuscript.

1. We present quantitative evaluation in terms of clustering purity and multi-target
tracking metrics in Section 2.

2. We show qualitative evaluation by visualizing the face tracking results overlaid on
the video sequences in Section 3.

3. We describe algorithmic details for the improved triplet loss in Section 4 and hier-
achical tracklet linking in Section 5.

2 Quantitative Evaluation

2.1 Datasets

The 8 challenging music videos tested in our experiments are publicly available on Y-
ouTube. In Table 1, we list the links of all music videos. The sequences T-ARA, WEST-
LIFE, and PUSSYCAT DOLLS are live music concert recordings and acquired from mul-
tiple cameras with different views. The other sequences BRUNO MARS, APINK, HEL-
LO BUBBLE, DARLING, and GIRLS ALOUD are MTV videos taken in different scenes.
All music videos contain large face appearance variations across different shots due to
changes in pose, view angle, scale, makeup, illumination, camera motion, and heavy
occlusion. In Figures 1–4, we show randomly selected sample faces in temporal order
in the videos for each person (using ground truth annotations) to illustrate the intra-class
variations and inter-class variations on four challenging sequences (APINK, DARLING,
T-ARA and BRUNO MARS). Table 2 summarizes the statistics of these videos, including
the duration, frames, and the number of shots, tracklets, detections, and main casts.

2.2 Clustering Evaluation

We compare our method with four recent state-of-the-art face clustering algorithm-
s [1,2,3,4] on the Frontal and BBT01 videos, which all exploit the visual constraints
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Table 1. Links to the music video dataset.

Tara https://www.youtube.com/watch?v=ai1_E5bMsp8
Pussycat Dolls https://www.youtube.com/watch?v=I4v_22Kk0mM
Bruno Mars https://www.youtube.com/watch?v=OPf0YbXqDm0
Apink https://www.youtube.com/watch?v=CDhfIgS4aAo
Hello Bubble https://www.youtube.com/watch?v=9lSJMKi184c
Darling https://www.youtube.com/watch?v=QB4dQcxgJPY
Westlife https://www.youtube.com/watch?v=h4T23UlySTY
Girls Aloud https://www.youtube.com/watch?v=bBPtP4t2J1k

Table 2. Statistics of the video datasets used in our experiments.

Video
Duration

(sec)
Frames

Main
casts

Shot
changes

Tracklets Face detections

Frontal 51 1,277 4 0 43 4,267
BBT01 1,373 32,976 7 402 689 51,981
BBT02 1,271 30,481 6 375 793 52,327
BBT03 1,328 31,848 13 406 903 63,659
BBT04 1,246 29,881 5 370 907 59,342
BBT05 1,217 29,185 5 321 850 61,029
BBT06 1,267 30,385 5 353 844 85,054
BBT07 1,273 30,522 10 372 611 52,450
T-ara 152 4,547 6 68 280 12,595
Pussycat Dolls 198 5,937 6 34 272 17,515
Bruno Mars 270 6,483 11 165 507 14,837
Apink 220 5,275 6 162 249 6,294
Hello Bubble 157 3,769 6 116 236 4,731
Darling 197 4,729 8 203 637 11,522
Westlife 229 5,736 4 45 680 27,306
Girls Aloud 221 5,531 5 134 984 22,798

from tracklets for face clustering. Unlike the methods based on hand-crafted features
and linear transformations, we apply a deep nonlinear metric learning method by adapt-
ing all layers of the CNN to learn discriminative features for faces of specific videos.
Table 3 shows the clustering accuracy results over faces and tracklets (using the same
datasets and metrics as [1,3])1. The results show that our adaptive features achieve high-
er clustering accuracy than the other three baseline features and competing methods on
both videos by a large margin. We attribute the performance improvement to the feature
adaptation to the specific video for capturing face appearance variations in the video.

Figures 5–6 show the quantitative comparison of different features with clustering
purity versus the number of clusters on 7 BBT sequences and 8 music videos. The ideal
line (purple dash line) means that all faces are correctly grouped into ideal clusters with
weighted purity WC = 1. For more effective features, their weighted purity measures
approach to 1 at a faster rate. For each feature, we show the weighted purity at the ideal

1 The code and data of some other methods (e.g., [5]) are not publicly available.

https://www.youtube.com/watch?v=ai1_E5bMsp8
https://www.youtube.com/watch?v=I4v_22Kk0mM
https://www.youtube.com/watch?v=OPf0YbXqDm0
https://www.youtube.com/watch?v=CDhfIgS4aAo
https://www.youtube.com/watch?v=9lSJMKi184c
https://www.youtube.com/watch?v=QB4dQcxgJPY
https://www.youtube.com/watch?v=h4T23UlySTY
https://www.youtube.com/watch?v=bBPtP4t2J1k
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Table 3. Clustering accuracy on the Frontal and BBT01 videos. We compare our results with
three baseline features and four other state-of-the-art face clustering methods [1,2,3,4] based on
the same face tracks input and metrics as in [1,3].

Method Frontal BBT01
faces tracklets faces tracklets

HOG 0.411 0.402 0.495 0.472
AlexNet 0.591 0.435 0.716 0.698
Pre-trained 0.777 0.381 0.747 0.775
Cinbis-ICCV-11 [2] 0.844 0.861 0.581 0.565
Wu-CVPR-13 [3] 0.950 0.907 0.626 0.596
Wu-ICCV-13 [1] 0.950 0.907 0.665 0.668
Xiao-ECCV-14 [4] 0.962 0.938 0.694 0.721
Ours-SymTriplet 0.998 0.998 0.939 0.978

number cluster (i.e., the number of people in the video) in the legend. The figures show
that identity-preserving features (Pre-trained and VGG-Face) trained on face recogni-
tion datasets offline achieve better performance than the generic feature representation
(e.g., AlexNet and HOG). Our video-specific features (Ours-SymTriplet) achieve su-
perior performance to all other alternatives, highlighting the importance of learning
adaptive features.

2.3 Multi-target Tracking Evaluation

Evaluation metrics. We conduct experimental evaluations and comparisons on multi-
face tracking using a comprehensive metric set in [6]. We list these evaluation metrics
in Table 4. The up and down arrows indicate whether higher scores or lower scores are
sought after for each respective variable.

Experimental results on multi-face tracking. Table 6-7 show quantitative results of
the proposed algorithm and the mTLD [7], ADMM [8] and IHTLS [9] on the BBT
dataset. Table 8-9 show the quantitative results on the music video dataset. The mTLD
method achieves the lowest performance in term of Recall, Precision, F1 and MOTA
on both datasets. We attribute the poor performance to its tendency to drift and the
use of low-level features (Haar-like features). The ADMM [8] and IHTLS [9] often
produce many identity switches and fragments because they fail to re-identify person-
s when abrupt camera motions or shot changes occur. Using the pre-trained features,
our method does not perform well in terms of F1 and MOTA, as the offline features
are not effective for linking the tracklets from one person in clustering. Ours-mTLD
has more IDS and Frag than Ours-SymTriplet. The main reason is that the shot-level
trajectories by mTLD are shorter and noisier than the original trajectories, since TLD
trackers sometimes drift or do not output tracking results when there are large appear-
ance changes. With the video specific features (Ours-SymTriplet), the proposed method
achieves improved performance in terms of precision, F1, and MOTA metrics, with sig-
nificantly fewer identity switches and fragments than the ADMM and IHTLS.

Table 5 shows the quantitative results with comparisons to two recent state-of-the-
art multi-face trackers [1,3] on the Frontal and BBT01 videos. For fair comparisons, we
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Table 4. Evaluation metrics for multi-face tracking. The up and down arrows indicate whether
higher scores or lower scores are sought after for each respective variable.

Name Definition
Recall↑ (Frame-based) correctly matched objects / total ground truth objects
Precision ↑ (Frame-based) correctly matched objects / total output objects
F1 ↑ The harmonic mean of precision and recall. F1 = 2(Precision ·

Recall)/(Precision+Recall)
FAF ↓ (Frame-based) No. of false alarms per frame
GT No. of ground truth trajectories
MT ↑ Mostly tracked: Percentage of GT trajectories which are covered by

tracker output for more than 80% in length
PT ↓ Partially tracked: Percentage of GT trajectories which are covered by

tracker output for less than 80% in length and more than 20%
Frag ↓ Fragments: The total of No. of times that a ground truth trajectory is

interrupted in tracking result
IDS ↓ ID switches: The total of No. of times that a tracked trajectory changes

its matched GT identity
MOTA ↑ The Multiple Object Tracking Accuracy takes into account false posi-

tives, missed targets and identity switches
MOTP ↑ The Multiple Object Tracking Precision is simply the average distance

between true and estimated targets

use the same tracklet inputs as [1,3]. Note that our algorithm performs better in terms of
tracking accuracy with fewer ID switches and fragments, which suggests the proposed
adaptive discriminative features are effective in identifying faces across multiple shots.

Table 5. Comparison with other state-of-the-art multi-face tracking algorithms. Experimental
results of tracklet linking on BBT01 and Frontal videos. We use the same tracklet inputs and
metrics as in [1,3]. GT: ground-truth tracks pre-defined based on a threshold of the frame gap
t0 = 150. NPT: the number of predicted tracks. MT: mostly tracked tracks. Frag: number of
fragments. IDS: number of ID switch. The best value is highlighted with the bold.

Method BBT01 Frontal
GT NPT MT↑ Frag↓ IDS↓ GT NPT MT↑ Frag↓ IDS↓

Wu-CVPR-13[3] 73 72 68 81 10 5 11 4 24 13
Method1 [1] 73 74 64 82 9 5 11 4 24 13
Method2 [1] 73 79 68 83 4 5 15 5 25 5
Ours-SymTriplet 73 73 72 74 1 5 18 5 19 1
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(a) Person 1

(b) Person 2

(a) Person 3

(b) Person 4

Person 5

Person 6

Fig. 1. Sampling ground truth faces of 6 people on the APINK sequence to illustrate the intra-
person and inter-person appearance variations.
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Person 1

Person 2

Person 3

Person 4

Fig. 2. Sampling ground truth faces of 4 people on the DARLING sequence to illustrate the intra-
person and inter-person appearance variations.
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Person 1

Person 2

Person 3

Person 4

Person 5

Person 6

Fig. 3. Sampling ground truth faces of 6 people on the T-ARA sequence to illustrate the intra-
person and inter-person appearance variations.
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Person 1

Person 2

Person 3

Person 4

Person 5

Person 6

Fig. 4. Sampling ground truth faces of 6 people on the BRUNO MARS sequence to illustrate the
intra-person and inter-person appearance variations.
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Fig. 5. Quantitative comparison of different features with the clustering purity versus the number
of clusters on the BBT dataset. The ideal line (dash line) means that all faces are correctly grouped
into ideal clusters with weighted purity WC = 1. For more effective features, their weighted purity
measures approach to 1 with a faster rate. For each feature, we show the weighted purity at the
ideal number cluster in the legend.
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Fig. 6. Quantitative comparison of different features with the clustering purity versus the number
of clusters on the music video dataset. The ideal line (dash line) means that all faces are cor-
rectly grouped into ideal clusters with weighted purity WC = 1. For more effective features, their
weighted purity measures approach to 1 at a faster rate. For each feature, we show the weighted
purity at the ideal number cluster in the legend.
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Table 6. Quantitative comparison with other state-of-the-art multi-target tracking methods on
the BBT01-BBT04 videos. The best and second best results are highlighted with the bold and
underline, respectively.

BBT01
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 1.0 5.7 1.7 0.25 7 0 1 1 5 -16.3 74.8
ADMM [8] 73.5 65.9 69.5 0.40 7 2 5 323 894 42.5 64.0
IHTLS [9] 73.4 71.2 72.3 0.36 7 2 5 312 890 45.7 64.0
Pre-trained 49.0 90.3 63.5 0.1 7 0 5 171 394 41.9 73.3
Ours-mTLD 67.0 91.4 77.3 0.09 7 0 6 223 556 58.4 73.8
Ours-Siamese 75.4 93.8 83.6 0.07 7 0 7 144 583 69 73.7
Ours-Triplet 77.3 92.5 84.2 0.09 7 1 6 164 610 69.3 73.6
Ours-SymTriplet 80.8 92.1 86.1 0.1 7 4 3 156 651 72.2 73.7

BBT02
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 0.2 2.7 0.4 0.11 6 0 1 1 1 -7.6 82.8
ADMM [8] 73.1 65.5 69.1 0.40 6 1 5 395 602 41.3 71.3
IHTLS [9] 72.1 74.1 73.1 0.37 6 0 6 394 587 42.4 71.4
Pre-trained 33.2 88.4 48.3 0.06 6 0 4 130 296 27.4 74.5
Ours-mTLD 51.6 89.5 65.5 0.09 6 0 6 174 434 43.6 75.9
Ours-Siamese 66.0 93.8 77.5 0.06 6 0 6 116 547 60.4 75.8
Ours-Triplet 68.2 91.4 78.1 0.09 6 0 6 143 582 60.2 75.7
Ours-SymTriplet 68.5 92.2 78.6 0.08 6 0 6 102 589 61.6 75.7

BBT03
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 4.3 40.6 7.8 0.08 13 1 2 5 52 -2.1 69.4
ADMM [8] 82.3 53.2 64.6 0.57 13 9 3 370 662 30.8 68.1
IHTLS [9] 81.7 59.2 68.7 0.53 13 9 3 376 650 33.5 68.0
Pre-trained 39.6 66.1 49.5 0.25 13 2 4 110 376 17.8 67.5
Ours-mTLD 63.9 72.6 68.0 0.29 13 6 6 142 530 38.0 67.9
Ours-Siamese 76.3 77.4 76.8 0.27 13 3 8 109 655 52.6 67.9
Ours-Triplet 76.9 75.7 76.3 0.3 13 5 7 121 664 50.7 67.8
Ours-SymTriplet 76.8 76.7 76.7 0.28 13 4 7 126 664 51.9 67.8

BBT04
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 0.5 3.1 0.9 0.18 5 0 0 0 1 -15.9 76.8
ADMM [8] 73.6 40.9 52.6 0.63 5 1 4 298 621 9.7 65.8
IHTLS [9] 72.3 45.7 56.0 0.58 5 0 5 295 594 13.3 65.8
Pre-trained 27.3 50.8 35.5 0.28 5 0 4 46 217 0.1 66.3
Ours-mTLD 53.7 57 55.3 0.43 5 0 5 103 424 11.6 66.3
Ours-Siamese 68.3 60.8 64.3 0.47 5 0 5 85 543 23 66.4
Ours-Triplet 70.1 58.2 63.6 0.54 5 0 5 103 580 18 66.4
Ours-SymTriplet 70.1 58.7 63.9 0.53 5 0 5 77 580 19.5 66.4
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Table 7. Quantitative comparison with other state-of-the-art multi-target tracking methods on
the BBT05-BBT07 videos. The best and second best results are highlighted with the bold and
underline, respectively.

BBT05
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 1.6 8.4 2.7 0.24 6 0 0 1 21 -15.5 76.9
ADMM [8] 84.1 57.7 68.4 0.59 6 5 1 380 488 37.4 68.2
IHTLS [9] 83.8 64.8 73.1 0.64 6 4 2 360 474 33.8 68.2
Pre-trained 49.9 75.3 60.0 0.23 6 1 5 98 302 32.3 75
Ours-mTLD 66.8 78.4 72.1 0.26 6 0 6 169 401 46.4 74.9
Ours-Siamese 79.1 82.5 80.8 0.23 6 3 3 128 477 60.7 75
Ours-Triplet 80.6 81.2 80.9 0.26 6 4 2 118 499 60.5 74.9
Ours-SymTriplet 80.6 81.2 80.9 0.26 6 4 2 90 497 60.9 74.9

BBT06
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 0 1.2 0 0.07 5 0 0 0 0 -3.9 89.3
ADMM [8] 85.8 51.9 64.7 0.58 5 4 1 527 556 47.5 97.6
IHTLS [9] 85.1 60.4 70.7 0.64 5 4 1 515 515 43.2 97.7
Pre-trained 51.6 70.1 59.4 0.38 5 0 5 191 405 27.8 98.2
Ours-mTLD 67.3 70.8 69.0 0.48 5 0 5 192 591 37.7 97.8
Ours-Siamese 77.9 72 74.8 0.53 5 2 3 156 672 46.2 97.9
Ours-Triplet 77.2 72 74.5 0.52 5 1 4 185 661 45.4 98.0
Ours-SymTriplet 75.8 74.2 75.0 0.46 5 1 4 196 646 47.6 98.0

BBT07
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 0.5 2.4 0.8 0.30 10 0 1 0 3 -17.9 78.5
ADMM [8] 74.6 67.3 70.8 0.27 10 1 9 416 800 54.2 64.3
IHTLS [9] 74.4 71.7 73.0 0.32 10 1 9 396 786 51.0 64.4
Pre-trained 56.2 91.6 69.7 0.08 10 1 6 162 445 49.4 75.3
Ours-mTLD 71.3 93.3 80.8 0.08 10 0 10 221 551 64.0 76.0
Ours-Siamese 76.4 94.3 84.4 0.08 10 1 8 146 574 70.3 75.9
Ours-Triplet 80.8 93.3 86.6 0.1 10 4 6 110 627 73.9 75.9
Ours-SymTriplet 81.2 93 86.7 0.1 10 4 6 99 634 74.1 75.9
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Table 8. Quantitative comparison with other state-of-the-art multi-target tracking methods on
the HELLO BUBBLE, T-ARA, PUSSYCAT DOLLS and BRUNO MARS videos. The best and
second best results are highlighted with the bold and underline, respectively.

HELLO BUBBLE
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 3.8 34.7 6.8 0.10 4 0 0 7 20 -3.5 66.5
ADMM [8] 66.1 80.2 72.5 0.23 4 0 4 115 191 47.6 69.9
IHTLS [9] 65.9 84.8 74.2 0.16 4 0 4 109 190 52.0 69.9
Pre-trained 47.1 83.8 60.3 0.10 4 0 4 71 187 36.6 68.5
Ours-mTLD 67.4 84.8 75.1 0.17 4 0 4 139 255 52.6 70.5
Ours-Siamese 67.6 88 76.5 0.13 4 0 4 105 249 56.3 70.6
Ours-Triplet 68.6 86.4 76.5 0.15 4 0 4 82 256 56.2 70.5
Ours-SymTriplet 68.6 86.5 76.5 0.15 4 0 4 69 256 56.5 70.5

T-ARA
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 24.7 52.4 33.6 0.72 6 0 3 130 148 1.4 67.9
ADMM [8] 58.0 68.3 62.8 0.86 6 0 6 251 641 29.4 63.8
IHTLS [9] 58.0 73.2 64.7 0.68 6 0 6 218 632 35.3 63.8
Pre-trained 60.9 95.9 74.5 0.10 6 0 6 143 232 57.3 72.4
Ours-mTLD 62.1 93.5 74.6 0.14 6 0 6 251 241 56 72.6
Ours-Siamese 62.1 95.5 75.3 0.09 6 0 6 106 213 58.4 72.5
Ours-Triplet 63.5 94.2 75.9 0.12 6 0 6 94 233 59.0 72.5
Ours-SymTriplet 62.8 95.4 75.7 0.10 6 0 6 75 235 59.2 72.4

PUSSYCAT DOLLS
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 13.4 56.9 21.7 0.24 6 0 1 24 78 3.1 71.3
ADMM [8] 89.3 74.2 81.0 0.58 6 4 2 287 412 63.2 63.5
IHTLS [9] 89.5 78.6 83.7 0.42 6 4 2 248 413 70.3 63.5
Pre-trained 76.4 88.0 81.8 0.3 6 2 4 128 405 65.1 64.9
Ours-mTLD 79.7 89.5 84.3 0.22 6 2 4 296 444 68.3 64.9
Ours-Siamese 81.2 88.9 84.9 0.24 6 2 4 107 430 70.3 64.9
Ours-Triplet 81.4 88.3 84.7 0.26 6 2 4 99 435 69.9 64.9
Ours-SymTriplet 81.6 88.2 84.8 0.26 6 2 4 82 439 70.2 64.9

BRUNO MARS
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 4.7 26.2 7.9 0.34 11 0 2 35 77 -8.7 65.3
ADMM [8] 68.9 76.0 72.3 0.40 11 3 8 428 503 50.6 85.7
IHTLS [9] 68.5 83.5 75.2 0.35 11 3 8 375 491 52.7 85.8
Pre-trained 53.7 92.3 67.9 0.10 11 0 9 151 453 48.3 88
Ours-mTLD 58.0 94.0 71.7 0.10 11 2 9 278 551 52.6 87.9
Ours-Siamese 62.3 92.8 74.6 0.12 11 2 8 126 540 56.7 87.8
Ours-Triplet 62.4 92.6 74.6 0.13 11 2 9 126 543 56.6 87.8
Ours-SymTriplet 62.9 91.9 74.7 0.14 11 2 9 105 551 56.8 87.8
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Table 9. Quantitative comparison with other state-of-the-art multi-target tracking methods on
the APINK, WESTLIFE, DARLING and GIRLS ALOUD videos. The best and second best results
are highlighted with the bold and underline, respectively.

APINK
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 16.4 47.5 24.4 0.25 6 0 2 31 70 -2.2 71.2
ADMM [8] 81.2 92.8 86.6 0.09 6 4 2 179 158 72.4 76.1
IHTLS [9] 81.2 95.4 87.7 0.05 6 4 2 173 157 74.9 76.1
Pre-trained 56.4 98.3 71.7 0.01 6 0 6 100 170 54.0 75.5
Ours-mTLD 81.5 98.0 89.0 0.02 6 3 3 173 240 77.4 76.3
Ours-Siamese 81.6 98.9 89.4 0.01 6 3 3 124 238 79.0 76.3
Ours-Triplet 82.1 98.5 89.6 0.02 6 4 2 140 244 78.9 76.3
Ours-SymTriplet 82.4 98.3 89.7 0.02 6 4 2 78 246 80.0 76.3

WESTLIFE
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 4.9 11.1 6.9 0.78 4 0 0 20 113 -34.7 56.9
ADMM [8] 89.1 36.0 51.3 0.60 4 4 0 223 184 62.4 87.5
IHTLS [9] 89.4 39.9 55.2 0.65 4 4 0 113 177 60.9 87.5
Pre-trained 77.8 79.5 78.6 0.40 4 1 3 85 128 57 88.2
Ours-mTLD 86.0 76.5 81.0 0.52 4 3 1 177 169 58.1 88.1
Ours-Siamese 86.8 79.7 83.1 0.44 4 3 1 74 142 64.1 88
Ours-Triplet 86.8 80.1 83.3 0.43 4 3 1 89 140 64.5 88
Ours-SymTriplet 85.6 83.9 84.7 0.33 4 3 1 57 136 68.6 88.1

DARLING
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 6.3 18.4 9.4 0.57 8 0 0 24 83 -22.0 69.9
ADMM [8] 88.3 74.0 80.6 0.62 8 7 1 412 342 53.0 88.4
IHTLS [9] 88.5 80.2 84.2 0.44 8 7 1 381 338 62.7 88.4
Pre-trained 53.1 85.2 65.4 0.20 8 2 6 115 233 42.7 88.5
Ours-mTLD 79.9 82.3 81.1 0.35 8 4 4 278 461 59.8 89.3
Ours-Siamese 85.2 86.3 85.7 0.27 8 7 1 214 310 69.5 88.9
Ours-Triplet 85.9 85.3 85.6 0.30 8 7 1 187 317 69.2 88.9
Ours-SymTriplet 86.7 85.7 86.2 0.29 8 7 1 169 323 70.5 88.9

GIRLSALOUD
Method Recall(%)↑ Precision(%)↑ F1(%)↑ FAF↓ GT MT↑ PT↓ IDS↓ Frag↓ MOTA(%)↑ MOTP(%)↑
mTLD [7] 2.2 40.7 4.2 0.10 5 0 0 9 32 -1.1 71.0
ADMM [8] 70.0 50.3 58.5 0.61 5 1 4 487 528 46.6 87.1
IHTLS [9] 69.8 60.2 64.7 0.46 5 1 4 396 482 51.8 87.2
Pre-trained 49.3 89.6 63.6 0.20 5 0 5 138 332 42.7 87.7
Ours-mTLD 54.3 90.5 67.9 0.17 5 0 5 322 425 46.7 88.2
Ours-Siamese 58.1 90.8 70.9 0.17 5 1 4 112 376 51.6 87.8
Ours-Triplet 57.2 92.0 70.5 0.15 5 1 4 80 367 51.7 87.8
Ours-SymTriplet 58.2 90.3 70.8 0.19 5 1 4 64 377 51.6 87.8
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3 Qualitative Evaluation

3.1 Multi-face Tracking Visualization on the Music Video Dataset

We show the tracking results of the proposed method with Our-SymTriplet features on
the 8 music videos. Figures 7-9 show the tracking results of the proposed method on
three unconstrained videos (T-ARA, PUSSYCAT DOLLS and WESTLIFE) taken in live
music concerts. They contain large face variations including changes of pose, scale, ex-
pression, illumination, etc. For the T-ARA sequence, the six singers have similar looks,
which makes the face tracking across shots significantly difficult, e.g., Person 6 and
Person 7 in Figure 7. The proposed algorithm is able to distinguish similar faces of
different people and track them reliably with few id switches.

Figures 10–14 show the tracking results of the proposed method on 5 MTV videos
(GIRLS ALOUD, HELLO BUBBLE, APINK, DARLING and BRUNO MARS). These videos
contain not only the large face variations including changes of pose, scale, expression
and illumination, but also changes of makeup (e.g., Person 2 in Figure 11, and Person
2 in Figure 13), visual style (e.g., Figure 12). People in the HELLO BUBBLE, APINK
and DARLING sequences have similar looks, e.g., Person 3, Person 5 and Person 6 in
Figure 12. The proposed algorithm is able to track most of the faces correctly.

3.2 Multi-face Tracking Visualization on BBT Dataset

We show the tracking results of the proposed method with the Our-SymTriplet features
on 7 BBT videos, shown in Figures 15-21. The BBT videos are taken mostly indoors,
and contain frequent changes of camera views and scenes, where faces have large ap-
pearance variations in viewing angle, pose, scale, and illumination. The proposed algo-
rithm is able to track multiple faces correctly.
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Fig. 7. Sample tracking results of the proposed algorithm on the T-ARA sequence. The faces of
the different people are color coded.
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Fig. 8. Sample tracking results of the proposed algorithm on the PUSSYCAT DOLLS sequence.
The faces of the different people are color coded.
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Fig. 9. Sample tracking results of the proposed algorithm on the WESTLIFE sequence. The faces
of the different people are color coded.
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Fig. 10. Sample tracking results of the proposed algorithm on the GIRLS ALOUD sequence. The
faces of the different people are color coded.
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Fig. 11. Sample tracking results of the proposed algorithm on the HELLO BUBBLE sequence. The
faces of the different people are color coded.
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Fig. 12. Sample tracking results of the proposed algorithm on the APINK sequence. The faces of
the different people are color coded.
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Fig. 13. Sample tracking results of the proposed algorithm on the DARLING sequence. The faces
of the different people are color coded.
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Fig. 14. Sample tracking results of the proposed algorithm on the BRUNO MARS sequence. The
faces of the different people are color coded.
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Fig. 15. Sample tracking results of the proposed algorithm on the BBT01 sequence. The faces of
the different people are color coded.
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Fig. 16. Sample tracking results of the proposed algorithm on the BBT02 sequence. The faces of
the different people are color coded.
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Fig. 17. Sample tracking results of the proposed algorithm on the BBT03 sequence. The faces of
the different people are color coded.
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Fig. 18. Sample tracking results of the proposed algorithm on the BBT04 sequence. The faces of
the different people are color coded.
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Fig. 19. Sample tracking results of the proposed algorithm on the BBT05 sequence. The faces of
the different people are color coded.
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Fig. 20. Sample tracking results of the proposed algorithm on the BBT06 sequence. The faces of
the different people are color coded.
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Fig. 21. Sample tracking results of the proposed algorithm on the BBT07 sequence. The faces of
the different people are color coded.
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Fig. 22. Failure cases on the APINK sequence. Our method incorrectly identifies Persons 1, 3, 4
and 6 as the same person across shots. Numbers and colors of the rectangles indicate the ground
truth identities of persons. The red rectangles show the tracking results of one trajectory (i.e. the
same person) by our method.

Fig. 23. Failure cases on the DARLING sequence. Our method incorrectly identifies Persons 1
and 4 as the same one across shots. Numbers and colors of rectangles indicate the ground truth
identities of persons. The red rectangles show the tracking results of one trajectory (i.e. the same
person) by our method.

3.3 Failure Modes

In the case where one person has significant appearance variations in different shots,
our method has difficulty. For example, in Figure 13, ID5 and ID3 are identified with
different trajectories, despite being the same person. We observe the same issue in ID1
and ID6. Similarly, in Figure 12, the ID1, ID8 and ID11 are also incorrectly labeled as
different identities.

Figure 22 shows some failure cases on the APINK sequence. Since the video consists
of many shots with one single persons, our method cannot generate sufficient negative
face pairs to train the Siamese/Triplet network for distinguishing similar faces. Persons
1, 3, 4 and 6 are incorrectly identified as the same person across shots. Figure 23 shows
some failure cases on the DARLING sequence. Persons 1 and 4 are incorrectly tracked
as one person.
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4 Improved Triplet Loss

4.1 Training Algorithm

We train the Triplet network model with the SymTriplet loss function by the stochas-
tic gradient decent with momentum. We compute the derivatives of Eqn. (4) in the
manuscript as follows:

∂Ls

∂W
=

{
∂ L̃s
∂W Ls > 0,
0 Ls = 0,

(1)

where

∂ L̃s

∂W
=2(f(xi

k)− f(xi
l))

∂ f(xi
k)−∂ f(xi

l)

∂W
− (f(xi

k)− f(x j
m))

∂ f(xi
k)−∂ f(x j

m)

∂W

− (f(xi
l)− f(x j

m))
∂ f(xi

l)−∂ f(x j
m)

∂W
, (2)

For the above derivations, we can compute the gradients from each input triplet ex-

amples given the values of f(xi
k), f(xi

l), f(x j
m) and ∂ f(xi

k)

∂W , ∂ f(xi
l)

∂W , ∂ f(x j
m)

∂W , which can be
obtained by running the standard forward and backward propagations separately for
each image in the triplet examples. The algorithm needs to go through all the triplets in
each batch to accumulate the gradients for each iteration. Algorithm 1 shows the main
steps of the training algorithm.

Algorithm 1 Triplet-based training with stochastic gradient descent
1: Input

Training samples {(xi
k,x

i
l ,x

j
m)}.

2: Output
The network parameters W,

3: for t = 1→Max number of iterations do
∂Ls
∂W = 0

4: for all training triplet samples (xi
k,x

i
l ,x

j
m) do

5: Calculate f(xi
k), f(xi

l) and f(x j
m) by forward propagation;

6: Calculate ∂ f(xi
k)

∂W , ∂ f(xi
l)

∂W and ∂ f(x j
m)

∂W by back propagation;

7: Calculate ∂Ls
∂W according to (1) and (2).

8: end for
9: Udapte the parameters Wt = Wt−1−λt

∂Ls
∂W

10: end for

5 Multi-face Tracking via Hierarchical Tracklet Linking

5.1 Linking Tracklets Within Each Shot

We use conventional multi-target tracking algorithms to perform data association of
face tracklets within each shot. In this paper, we use the Hungarian algorithm proposed
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in [10,11]. We measure the linking probabilities between two tracklets based on tempo-
ral, kinematic and appearance information. Here, we present the algorithmic details.

Supposing there are n tracklets in one shot, the goal of tracklet association within
each shot is to find the maximum weighted matchings M = [mi j]n×n, where mi j ∈ {0,1}
indicates whether there is a match between Ti and T j (mi j = 1 as a match). We can then
transfer the data association problem into a standard assignment problem by applying
the Hungarian algorithm to the similarity matrix C. The similarity matrix C can be
divided into four block matrices:

C =

[
Ca Ct

Cs C0

]
2n×2n

, (3)

where the first block matrix Ca = {ca(Ti,T j)}n×n models the association score be-
tween tracklets Ti and T j; the second block matrix Ct = diag{ct

1, · · · ,ct
n} models the

likelihood of the tracklet Ti being a terminal object trajectory; the third block matrix
Cs = diag{cs

1, · · · ,cs
n} models the likelihood of the tracklet T j being an initial object

trajectory; C0 = {0}n×n serves as a place holder.

Similarity matrix Ca. The value ca(Ti,T j) is the similarity score between Ti and T j.
In this paper, we adopt the bounding box representation. Hence, the kth detection re-
sponse in the trajectory Ti = {xi

1, · · · ,xi
ni
} is represented as xi

k = {pi
k,q

i
k,a

i
k, t

i
k}, where

pi
k and qi

k are the central position and the size (width, height) of the bounding box, re-
spectively. The vector ai

k is the 64-D feature descriptor that is extracted from our learned
Siamese/Triplet network. The parameter t i

k is the frame index.
We define the similarity score ca(Ti,T j) as follows:

ca(Ti,T j) = wmφm(Ti,T j)+wsφs(Ti,T j)+waφa(Ti,T j), s.t. i 6= j, (4)

where φm(Ti,T j), φs(Ti,T j) and φa(Ti,T j) are the similarity scores between Ti and T j

in terms of motion trend, size, and appearance descriptors, respectively. The parameters
wm, ws and wa are the weights of φm(Ti,T j), φs(Ti,T j) and φa(Ti,T j), respectively
(wa = ws = 0.3, wm = 0.4 in our implementation). We describe φm(Ti,T j), φs(Ti,T j)
and φa(Ti,T j) as follows.

For the motion trend cue, we compute the probability that the tracklet T j is linked
to Ti:

φm(Ti,T j) =
1

1+ edm(Ti,T j)
, (5)

where dm(Ti,T j) denotes the difference between the predicted positions and the posi-
tions of the true positions. We fit the two tracklets through the polynomial curve fitting.
We use the fitted curve p̂i(·) to predict the positions of the tracklet Ti:

dm(Ti,T j) = ∑
k∈{1,2,3}

‖p̂i(t j
k )−p j

k‖
2
2 + ∑

k∈{ni−2,ni−1,ni}
‖p̂ j(t i

k)−pi
k‖2

2, (6)

where p̂i(t j
k ) denotes the predicted position of Ti at the frame t j

k .
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Similarly, for the size similarity, we compute the probability

φs(Ti,T j) =
1

1+ eds(Ti,T j)
, (7)

where ds(Ti,T j) denotes the difference between the predicted positions and the posi-
tions of the true positions. We also fit the two tracklets through the polynomial curve
fitting:

ds(Ti,T j) = ∑
k∈{1,2,3}

‖q̂i(t j
k )−q j

k‖
2
2 + ∑

k∈{ni−2,ni−1,ni}
‖q̂ j(t i

k)−qi
k‖2

2, (8)

where q̂i(t j
k ) denotes the predicted size of Ti at the frame t j

k .
For the appearance cue, we simply check the similarity of the two tracklets as fol-

lows:

φa(Ti,T j) =
1

1+ eda(Ti,T j)
, (9)

where da(Ti,T j) is the Euclidean distance between the two tracklets Ti and T j. It is
defined as:

da(Ti,T j) =
1
ni

1
n j

ni

∑
k=1

n j

∑
l=1
‖ai

k−a j
l ‖

2
2. (10)

For i = j, the self-association of the tracklet Ti is equivalent to treating it as a
false alarm because it cannot be an initial trajectory or a terminated trajectory, or be
associated with any other tracklets. We define the likelihood that Ti is a false alarm as
follows:

ca(Ti,Ti) = Zt(1−ϕ)ni , (11)

where Zt is a normalization factor, and ϕ ∈ (0,1) is the precision of the detector (ϕ is
set to 0.8 in our experiments).

Similarity matrix Ct . The matrix Ct = diag{ct
1, · · · ,ct

n} is a diagonal matrix of size
n×n defining if Ti is a terminal object trajectory. Here, we use fixed scores, indicating
that each trajectory has a uniform priori probability to be temporally invisible: Ct =
diag{0.25, · · · ,0.25}.

Similarity matrix Cs. The matrix Cs = diag{cs
1, · · · ,cs

n} models the likelihood of the
tracklet T j being an initial object trajectory. We empirically set the initialization prob-
abilities of each tracklet as: Ct = diag{0.25, · · · ,0.25}.

We can then apply the Hungarian algorithm on the similarity matrix C to find the
optimal assignment matrix M. For each mi j = 1, do as follows:

1. If i = j ≤ n, Ti is considered as a false alarm;
2. If i≤ n, j ≤ n and i 6= j, associate Ti and T j;
3. If i≤ n and j > n, Ti is considered as a terminated tracklet;
4. If i > n and j ≤ n, T j is considered as a new track.
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5.2 Linking Tracklets Across Shots

For linking tracklets across multiple shots, we apply the bottom-up Hierarchical Ag-
glomerative Clustering (HAC) algorithm with a stopping threshold with the learned
appearance features as follows:
(a) Supposing there are N tracklets in all shots: Γ = {T1,T2, . . . ,TN}. We start with

treating each tracklet as a singleton cluster.
(b) We evaluate all pair-wise distances between tracklets using the mean distance met-

ric: given Ti = {xi
1, . . . ,x

i
ni
} and T j = {x j

1, . . . ,x
j
n j}, the distance Di j is defined as:

Di j =
1
ni

1
n j

ni

∑
k=1

n j

∑
l=1
‖f(xi

k)− f(x j
l )‖

2
2 , (12)

where xi
k denotes the kth face detection in the ith tracklet, and f(xi

k) denotes the
feature extracted from the embedding layer in the Siamese/Triplet network.

(c) For pairs of tracklets which have overlapped frames, we set their distances as infin-
ity.

(d) Find the pair of clusters that has the shortest distance.
(e) Merge the pair into a new cluster, and update all distances from the new cluster to

all other clusters. For those clusters which have overlapped frames with the new
cluster, the corresponding distances to the new cluster are set to infinity.

(f) Repeat (d)-(e) until the shortest distance is larger than a threshold θ .
The clusters containing less than 4 tracklets and less than 50 frames are removed.

The tracklets in each cluster are labeled with the same identity to form the final trajec-
tories.
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