
13

3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length

The entities R operates on are technically known as objects. Examples are vectors of numeric
(real) or complex values, vectors of logical values and vectors of character strings. These are
known as “atomic” structures since their components are all of the same type, or mode, namely
numeric1, complex, logical, character and raw.

Vectors must have their values all of the same mode. Thus any given vector must be un-
ambiguously either logical, numeric, complex, character or raw. (The only apparent exception
to this rule is the special “value” listed as NA for quantities not available, but in fact there are
several types of NA). Note that a vector can be empty and still have a mode. For example
the empty character string vector is listed as character(0) and the empty numeric vector as
numeric(0).

R also operates on objects called lists, which are of mode list. These are ordered sequences
of objects which individually can be of any mode. lists are known as “recursive” rather than
atomic structures since their components can themselves be lists in their own right.

The other recursive structures are those of mode function and expression. Functions are
the objects that form part of the R system along with similar user written functions, which we
discuss in some detail later. Expressions as objects form an advanced part of R which will not
be discussed in this guide, except indirectly when we discuss formulae used with modeling in R.

By the mode of an object we mean the basic type of its fundamental constituents. This is a
special case of a “property” of an object. Another property of every object is its length. The
functions mode(object) and length(object) can be used to find out the mode and length of
any defined structure2.

Further properties of an object are usually provided by attributes(object), see Section 3.3
[Getting and setting attributes], page 14. Because of this, mode and length are also called
“intrinsic attributes” of an object.

For example, if z is a complex vector of length 100, then in an expression mode(z) is the
character string "complex" and length(z) is 100.

R caters for changes of mode almost anywhere it could be considered sensible to do so, (and
a few where it might not be). For example with

> z <- 0:9

we could put

> digits <- as.character(z)

after which digits is the character vector c("0", "1", "2", ..., "9"). A further coercion, or
change of mode, reconstructs the numerical vector again:

> d <- as.integer(digits)

Now d and z are the same.3 There is a large collection of functions of the form as.something()

for either coercion from one mode to another, or for investing an object with some other attribute
it may not already possess. The reader should consult the different help files to become familiar
with them.

1 numeric mode is actually an amalgam of two distinct modes, namely integer and double precision, as explained
in the manual.

2 Note however that length(object) does not always contain intrinsic useful information, e.g., when object is
a function.

3 In general, coercion from numeric to character and back again will not be exactly reversible, because of
roundoff errors in the character representation.



Chapter 3: Objects, their modes and attributes 14

3.2 Changing the length of an object

An “empty” object may still have a mode. For example

> e <- numeric()

makes e an empty vector structure of mode numeric. Similarly character() is a empty character
vector, and so on. Once an object of any size has been created, new components may be added
to it simply by giving it an index value outside its previous range. Thus

> e[3] <- 17

now makes e a vector of length 3, (the first two components of which are at this point both NA).
This applies to any structure at all, provided the mode of the additional component(s) agrees
with the mode of the object in the first place.

This automatic adjustment of lengths of an object is used often, for example in the scan()

function for input. (see Section 7.2 [The scan() function], page 31.)

Conversely to truncate the size of an object requires only an assignment to do so. Hence if
alpha is an object of length 10, then

> alpha <- alpha[2 * 1:5]

makes it an object of length 5 consisting of just the former components with even index. (The
old indices are not retained, of course.) We can then retain just the first three values by

> length(alpha) <- 3

and vectors can be extended (by missing values) in the same way.

3.3 Getting and setting attributes

The function attributes(object) returns a list of all the non-intrinsic attributes currently
defined for that object. The function attr(object, name) can be used to select a specific
attribute. These functions are rarely used, except in rather special circumstances when some
new attribute is being created for some particular purpose, for example to associate a creation
date or an operator with an R object. The concept, however, is very important.

Some care should be exercised when assigning or deleting attributes since they are an integral
part of the object system used in R.

When it is used on the left hand side of an assignment it can be used either to associate a
new attribute with object or to change an existing one. For example

> attr(z, "dim") <- c(10,10)

allows R to treat z as if it were a 10-by-10 matrix.

3.4 The class of an object

All objects in R have a class, reported by the function class. For simple vectors this is just the
mode, for example "numeric", "logical", "character" or "list", but "matrix", "array",
"factor" and "data.frame" are other possible values.

A special attribute known as the class of the object is used to allow for an object-oriented
style4 of programming in R. For example if an object has class "data.frame", it will be printed
in a certain way, the plot() function will display it graphically in a certain way, and other
so-called generic functions such as summary() will react to it as an argument in a way sensitive
to its class.

To remove temporarily the effects of class, use the function unclass(). For example if winter
has the class "data.frame" then

> winter

4 A different style using ‘formal’ or ‘S4’ classes is provided in package methods.



Chapter 3: Objects, their modes and attributes 15

will print it in data frame form, which is rather like a matrix, whereas

> unclass(winter)

will print it as an ordinary list. Only in rather special situations do you need to use this facility,
but one is when you are learning to come to terms with the idea of class and generic functions.

Generic functions and classes will be discussed further in Section 10.9 [Object orientation],
page 48, but only briefly.


