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Abstract

Cross-ratio (CR) based methods offer many attractive properties for
remote gaze estimation using a single camera in an uncalibrated
setup by exploiting invariance of a plane projectivity. Unfortu-
nately, due to several simplification assumptions, the performance
of CR-based eye gaze trackers decays significantly as the subject
moves away from the calibration position. In this paper, we intro-
duce an adaptive homography mapping for achieving gaze predic-
tion with higher accuracy at the calibration position and more ro-
bustness under head movements. This is achieved with a learning-
based method for compensating both spatially-varying gaze errors
and head pose dependent errors simultaneously in a unified frame-
work. The model of adaptive homography is trained offline using
simulated data, saving a tremendous amount of time in data collec-
tion. We validate the effectiveness of the proposed approach using
both simulated and real data from a physical setup. We show that
our method compares favorably against other state-of-the-art CR
based methods.

CR Categories: I.5.4 [Applications]: Computer vision; I.3.6
[Methodology and Techniques]: Interaction techniques;

Keywords: Cross-ratio; Eye gaze tracking; Simulation

1 Introduction
Gaze tracking research has been extensively studied for the past few
decades [Duchowski 2007; Holmqvist et al. 2011; Hansen and Ji
2010]. An effective gaze tracking system is of great interest because
it can enable two important applications: 1) multi-modal natural
interaction [Morimoto and Mimica 2005; Zhai et al. 1999] and 2)
understanding and analyzing human attention [Pantic et al. 2007].

Typical remote gaze tracking systems consist of one or more cam-
eras for capturing subject’s eye images and multiple infrared light
sources for generating corneal reflections (glints). The captured
images are then processed to extract informative features that are
invariant to illumination and viewpoint. Commonly used features
include pupil center, corneal reflections and limbus contour. Note
that we focus mainly on feature-based gaze tracking methods. For
other approaches such as appearance-based methods, we refer the
readers to a recent survey [Hansen and Ji 2010] for a comprehensive
review.

There are two types of feature-based approaches for gaze predic-
tion: interpolation-based and model-based [Hansen and Ji 2010].
Interpolation-based methods [Morimoto and Mimica 2005; Cerro-
laza et al. 2008; Cerrolaza et al. 2012] directly map eye features

to gaze points through 2D regression functions without considering
the optical properties, the eye physiology, and the geometric rela-
tionship between eye, screen and camera. Therefore, interpolation-
based methods are sensitive to head movements, especially to depth
variation. Yet, they are simple to implement and do not need to
go through tedious hardware calibration procedures. Model-based
methods [Guestrin and Eizenman 2006; Hennessey et al. 2006;
Model and Eizenman 2010] estimate the 3D gaze vector and com-
pute 2D point of regard by intersecting 3D rays with the 2D screen
plane. Unlike interpolation-based methods, model-based methods
are able to accommodate larger head movements. However, they
require more complex system setup and fully calibrated hardware.

Cross-ratio (CR) based approaches offer the two advantages from
both interpolation-based and model-based methods: (1) do not re-
quire hardware calibration and (2) allow free head motion. How-
ever, as shown in [Kang et al. 2008], the subject-dependent estima-
tion bias arises from two main causes: (1) the angular deviation of
the visual axis from the optic axis and (2) the virtual image of the
pupil center is not coplanar with corneal reflections. Many exten-
sions have been proposed to improve the basic CR-based approach
[Yoo et al. 2002] along two directions: accuracy at the calibrated
position and robustness under head movements. In Figure 1, we
show a qualitative comparison with existing CR-based methods us-
ing the improvement over accuracy and robustness as main axes.

First, several efforts have been made to correct the estimation bias
induced from the simplification assumptions for accurate gaze esti-
mation at the calibrated position. The bias compensation is usually
achieved by applying a 2D planar transformation on the predicted
gaze by the basic CR method [Yoo et al. 2002]. These 2D planar
transformation can be computed by a subject-dependent calibration,
i.e., asking subjects to look at a few predefined calibration targets on
the screen. Examples include scale correction in [Yoo and Chung
2005], scale and translation correction in [Coutinho and Morimoto
2006] and homography-based correction [Kang et al. 2007; Hansen
et al. 2010]. Note that some of the bias correction methods [Yoo
and Chung 2005; Coutinho and Morimoto 2006] require the pro-
jected position the corneal center in image, which can be obtained
using an additional on-axis light source. For further accuracy, er-
ror compensation methods have also been introduced to model and
compensate spatially-varying errors, e.g., via polynomial-based re-
gression [Cerrolaza et al. 2012; Cerrolaza et al. 2008] or Gaussian
process regression [Hansen et al. 2010].

Second, as the CR-based methods do not explicitly compensate for
head motion, they are not robust under head movements. The per-
formance of CR-based methods decays rapidly when the head po-
sition deviates from the calibrated position, especially along the
depth axis. This problem could be partially alleviated by addi-
tional calibration positions, yet it involves significant increase in
subject-dependent calibration time. In [Coutinho and Morimoto
2010], a depth compensation method was proposed using depth-
adaptive displacement vector correction, extented from [Coutinho
and Morimoto 2006]. Later, they proposed a hybrid (model-based
and cross-ratio based) approach to account for the errors from both
eye translation and rotation [Coutinho and Morimoto 2012]. They
estimate the visual axis and the plane formed by the virtual im-



ages of the glints under a weak perspective camera model. After
correcting the angular deviation of visual and optical axis and the
co-planarity assumptions, the basic CR-based model was applied to
predict the final gaze .

Despite these attempts on extending CR-based methods, two fun-
damental problems remain unsolved. First, the pursuits of improv-
ing the accuracy and robustness of gaze trackers are usually sepa-
rately addressed. Second, the state-of-the-art head pose adaptation
method in [Coutinho and Morimoto 2012] is derived under weak-
perspective camera models. In other words, the camera is required
with large focal length, has limited field-of-view and can only cap-
ture limited head positions.

Figure 1: Qualitative comparison of our approach with existing
cross-ratio based methods along two directions: accuracy for static
head and robustness under head movements.

In this paper, we propose a learning-based approach to push the en-
velope of CR based methods for accurate and robust eye gaze track-
ing. Our base bias correction method is based on the homography-
based methods [Kang et al. 2007; Hansen et al. 2010]. The
homography-based methods work well at the calibration position.
However, they are not robust to head movement and may not be
sufficiently accurate due to the lack of spatial-varying error mod-
eling. To compensate both types of errors in a unified framework,
we introduce an adaptive homography mapping, which depends on
two types of predictor variables capturing 1) the head movement
relative to the calibration position and 2) the position of the gaze on
the screen. We collect the groundtruth data for training the adaptive
homography mapping through a series of subject-dependent cali-
bration at various head positions using simulation. During testing,
the trained model is used to adaptively correct the bias induced from
both types of errors.

We make the following three contributions.

• We introduce a learning-based adaptation approach for simul-
taneously compensating spatially-varying errors and errors in-
duced from head movements. We improve both the accuracy
and the robustness of CR based gaze tracking systems in a
unified framework.

• Our method generalizes previous works on compensating
head movement using glint transformation, e.g., the distance
between glints [Cerrolaza et al. 2012] or size variation of the
glint pattern in [Coutinho and Morimoto 2010] by consider-
ing the geometric transformation between the glint patterns.
The resultant model not only compensates depth variations,
but also movements parallel to the screen plane.

• As we obtain the adaptation function through a learning pro-
cess trained on simulated data, any prior knowledge about the

system setup (if available) can be easily incorporated into our
system.

2 An Accurate and Robust Gaze Estimation
Method

2.1 Overviews

Our method is built upon the recent advances of homography-based
methods for gaze estimation bias correction [Kang et al. 2007;
Hansen et al. 2010]. The bias correcting homography transforma-
tion can be computed via solving the point set registration prob-
lem from the predicted gaze points by the basic CR method [Yoo
et al. 2002] to the groundtruth targets on the screen during subject-
dependent calibration. Homography-based methods can be con-
sidered as generalization of methods allowing limited 2D planar
transformation, e.g., scaling [Yoo and Chung 2005] or scaling and
translation [Coutinho and Morimoto 2006] because of their ability
to correct perspective distortion.

Improving accuracy at static head position Homograph-based
methods generally work well at the calibration position because
they effectively model the optical and visual axis offsets. How-
ever, due to the model error from the planarity assumption on pupil
center and the plane formed by glints, spatially-varying errors arise.
Therefore, for accurate prediction, the bias correcting homography
mapping should depend on the subject’s gaze direction.

Improving robustness under head movements It is well
known that the performance of homography-based methods de-
grade significantly when the subject moves away from the calibra-
tion position because the optimal bias correcting homography is a
function of head positions. We illustrate this effect by performing
a series of subject-dependent calibrations at head positions located
at different distances to the screen using simulation. In Figure 2,
we plot the values of the optimal bias-correcting homography com-
puted at different head positions along the depth axis. From left to
right, we plot the scaling terms for x, y and translation terms for
x, y, respectively. We can see that these values change smoothly
with the head positions. Supposing we can “predict” how the bias-
correcting homography changes at a new head position, the perfor-
mance of the gaze tracker will be as if it were calibrated even at that
new head position.

With these two insights, our goal is to design a scheme to predict
the variation of the bias correcting homography computed at the
calibration position based on two factors: 1) the relative changes
between the current head position and the calibration position and
2) the current gaze direction.

2.2 Adaptive Homography Mapping

CR with homography-based bias correction Denote Li as the
point light sources located at the four screen corners (1 ≤ i ≤ 4),
Gi as the corresponding corneal reflection and gi as the images
of Gi. We also denote P as the pupil center in 3D and p as its
projection in image. The CR method [Yoo et al. 2002] assumes each
of the group (Li, Gi, gi) is co-planar, denoted as plane ΠL, ΠG,
Πg , respectively. We can thus describe the transformation between
planes ΠL, ΠG, Πg through homographies. Under the assumption
that the pupil center P lies in ΠG, the point of regard prediction is
given by

PoRCR = HGL(HgG(p)) = HCR(p), (1)

where HgG maps plane Πg to plane ΠG, HGL maps plane ΠG to
plane ΠL, and HCR is the combined transform of HGL and HgG.
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Figure 2: The values of the optimal bias-correcting homography computed at different head positions along the depth axis. Note that the last
element of each homography is normalized to one.

However, because these simplification assumptions are not valid in
practice, large gaze estimation biases are observed. Homography-
based methods [Kang et al. 2007; Hansen et al. 2010] apply an-
other homography transformation to correct these gaze estimation
bias. In [Hansen et al. 2010], the glints in images are first mapped
onto a normalized space (e.g., a unitary square ΠN ) and then use
the bias-correcting homography to map the estimated gaze points
in the normalized space to the expected gaze points in the screen
space ΠL. The point of regard prediction by homography-based
prediction is given by

PoRHOM = HNL(HN
CR(p)), (2)

where HN
CR maps the image space to the normalized space and

HNL maps the normalized space to the screen space.

Denote v as the index for the target position on the screen, V as the
set of the target index, and tv as the target position in the screen
space. The goal of the subject-dependent calibration is to find the
optimal bias-correcting homography H∗NL that minimizes the re-
projection errors:

H∗NL = argmin
HNL

∑
v∈V

||tv −HNL(HN
CR(pv))||22, (3)

where pv is the 2D pupil center position in the image when gazing
at target v.

Adaptive Homography Mapping We propose to model the vari-
ation of the bias-correcting homography HNL using another ho-
mography mapping HA. The point of regard by the adaptive ho-
mography is given by

PoRAH = HNL(HA(HCR(p))) (4)

Note that in Eqn 4, the bias-correcting homography HNL is com-
puted by the same minimization process in Eqn 3 at the calibration
and remain unchanged for the same subject. The adaptive homog-
raphy mapping HA, on the other hand, needs to vary adaptive to
the current head position relative to the calibration position as well
as the gaze direction. We thus pose the adaptive homography as
a regression problem. That is, given predictor variables describing
the relative head position and gaze direction, we want to predict the
values in HA.

We propose two types of predictor variables x = [xm,xg]T. First,
we capture the head movements relative to the calibration position
using the geometric transformation between the glints quadrilateral
stored at the calibration and the current glints quadrilateral. In prac-
tice, we use affine or similarity transformation to encode the relative
movement. For example, when the subject moves toward the screen
after calibration, the scale term of the transformation will be greater
than one. We obtain the first type of predictor variable xm by vec-
torizing the motion parameters. Therefore, we have 6-dimensional

and 4-dimensional vector for xm when using affine transformation
and similarity transformation, respectively. Second, for encoding
the gaze direction for spatially-varying mapping, we use the pupil
center position in the normalized space xg = HCR(p− p0) as fea-
tures, where p0 is the pupil center position when gazed at the center
of the screen.

With these predictor variables, we model the adaptive homography
as polynomial regression of degree two (i.e., quadratic regression):

HA,x = f(x, β), (5)

In the quadratic regression, the values of the adaptive homogra-
phy are linear with the predictor variables, which contain a constant
term, linear terms, quadratic terms, as well as the interaction terms.

Relationship with prior works In [Coutinho and Morimoto
2010], error compensation for depth variation is achieved by adap-
tively scaling the translational correction vectors using the relative
size of the glint quadrilaterals at the calibration position and the
current position. This could be considered as a special case within
our formulation. Our formulation considers a richer set of trans-
formation than scaling for prediction and use homography instead
of translation only for correction. As observed in the simulation in
Figure 2, the values of the optimal bias-correcting homographies
are all dependent on the head movements. It suggests that using
only translation for correction is suboptimal.

In [Cerrolaza et al. 2012], the error compensation is achieved by
predicting the translation vector using data collected by a series of
subject calibrations. In contrast, we use simulated training data for
learning the adaptation, saving tremendous amount of subject cal-
ibration time. In addition, the use of simulation allows us to use
more complex model than just translation for prediction.

2.3 Learning Homgraphy Adaptation

Denote u as the head position in 3D and U as the set of sampled
head positions. Our objective function is defined as

L(β) =
∑
u∈U

∑
v∈V

||tu,v −H∗NL(HA,x(HN
CR(pu,v)))||22, (6)

where HA,x = f(x, β) is the quadratic regression model for adap-
tive homography. The goal of learning adaptive homography is to
find the optimal matrix of coefficients that minimize the reprojec-
tion errors by summing all the squared errors between the predicted
gaze positions and the groundtruth ones on the screen when the
simulated subjects are located at all sampled head positions.

Training data collection We define the screen plane as the x−y
plane and the depth from screen as the z-axis in the world coor-
dinate system. We sample a typical working space in front of the



Figure 3: Eye gaze prediction results using the bias-correcting ho-
mography computed at the calibration position. Green dots are
groundtruth and red dots are predictions.

screen using a 5× 5× 5 grid with ranges from -200mm to 200mm,
centered at position [0, 0, 600] mm. At each head position u, we
perform subject-dependent calibration in Eqn 3 using a 5 × 5 cali-
bration pattern on the screen. To account for subjects with different
eye parameters, we also randomly sample 50 virtual subjects us-
ing Gaussian distributions with means of typical eye parameters in
[Guestrin and Eizenman 2006] and standard deviations of 10% of
the values of the parameter. For example, the typical size of corneal
radius is 7.8 mm. We then draw random samples using a Gaussian
distribution with mean 7.8 and standard deviation 0.78.

Objective function minimization To minimize the objective
function defined in Eqn 6, we take a two-step approach. First,
we estimate the prediction function by minimizing an algebraic er-
ror. At each head position u, we can compute the optimal bias-
correcting homography Hu

NL by performing a subject-dependent
calibration at position u. Ideally, Hu

NL = H∗NLHA,x up to a
scale factor. We can thus minimize the algebric errors between
the prediction HA,x = f(xu,v, β) and the difference of the bias-
correcting homography (H∗NL)−1(Hu

NL) (with the last element
normalized to 1), where the H∗NL is the bias-correcting homog-
raphy computed at the default calibration position. The algebraic
error minimization can thus be formulated as

βa = argmin
β

∑
u∈U

∑
v∈V

||(H∗NL)−1(Hu
NL)− f(xu,v, β)||22, (7)

where βa is the estimated matrix of coefficients after minimizing
the algebraic errors. Second, to minimize the reprojection errors in
Eqn 6, we start with the initial solution using βa and perform non-
linear least square optimization using the Levenberg-Marquardt al-
gorithm.

Training process visualization Here we use a subset of train-
ing data (10 virtual subjects) to visualize the training process and
training model selection. In Figure 3, we show the gaze prediction
results at various head positions using the bias-correcting homogra-
phy H∗NL computed at the default calibration position. We can see
that the gaze predictions are widely scattered, indicating the need
for head position adaptation.

In Figure 4, we show the prediction using adaptive homography
under various model selection choices. We show the results of the
linear and quadratic regression model in the first and second row,
respectively. The training errors in terms of root mean square errors
can be found in Figure 5. With quadratic regression, the model of
using both motion parameters of the glints quadrilaterals xm and

Figure 5: Error comparison of using different training models in
terms of root mean sqaure errors.

pupil center in the normalized space xg as predictor variables has
the best performance in training. This training process visualiza-
tion provides two insights. First, the linear regression model may
not be sufficiently expressive in capturing the homography variation
among different head positions. For example, from the training er-
rors in RMSE, we can see that the reprojection minimization is not
able to reduce the errors further. Second, from the visualization of
algebraic errors and reprojection errors minimization, we observe
that including the pupil center position in the normalized space xg

as features can significantly improve the adaptation, reducing the
training errors by half. Also, as can be seen from Figure 4 (sec-
ond row, column 3 and 4), the adaptation is able to compensate
the spatially-varying errors due to the non-coplanarity of the pupil
center and the plane formed by the glints.

3 Evaluation using Simulated Data

In the simulated evaluation, our goal is to investigate and under-
stand how various factors affect the performance of the gaze track-
ing. These factors including system setup, sensor resolution, noise
level, number of calibration points, eye parameters, and head move-
ments.

We compare the performance of our method to that of other
three state-of-the-art CR-based gaze trackers: CR-DV [Coutinho
and Morimoto 2006], CR-HOM [Hansen et al. 2010], CR-DD
[Coutinho and Morimoto 2010]. 1 Among them, CR-D [Coutinho
and Morimoto 2006] improves the accuracy of basic CR method
[Yoo et al. 2002] via scale and translation correction. CR-HOM
[Hansen et al. 2010] maps estimated gaze points from the basic CR
method [Yoo et al. 2002] to the groundtruth gaze points using a ho-
mography transformation. CR-DD [Coutinho and Morimoto 2010]
and PL-CR [Coutinho and Morimoto 2012] are two recent efforts
on improving the robustness aspect of the CR-based gaze tracking
system.

In the following evaluation, we use the gaze estimation error (in
degree) to measure the accuracy. At each head position, the subject
(or simulated eye model) is asked to gaze at a pre-defined group of
targets on the screen. An averaged gaze error is then computed by
taking the average of the gaze estimation errors (in degree) for all
screen targets.

1We implemented the method PL-CR in [Coutinho and Morimoto 2012].
However, we found that the method perform poorly (gaze erros ≥ 3◦)
when the weak perspective camera assumption was violated. As noted in
[Coutinho and Morimoto 2012], the camera needs to have a narrow field of
view (≈ 5◦) and needs to be repositioned whenever the subjects move.
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Figure 4: Training process visualization. These plots are prediction results using adaptive homography under different models. The first
row: linear regression model. The second row: quadratic regression model. Compared with Figure 3, the adaptive homography significantly
reduce the errors due to head movements.

3.1 Setup

Screen and camera model The simulated screen is of size
400mm×300mm. The four IR light sources are placed at the screen
plane with horizontal offset 27 mm and vertical offset 29 mm
to each screen corner. The camera is located slightly below the
screen. The camera has a 13mm focal length with sensor size
(7.18mm×5.32mm) to allow large head movement without repo-
sitioning the camera. The horizontal field of view can be computed
as FoV = 2 arctan d

2f
≈ 30.87◦. We assume that the captured

image resolution has 1920 × 1080 pixels.

Calibration position and eye parameters The default calibra-
tion head position is located at (0, 50, 600)mm, where (0, 0, 0) in-
dicates the center of the screen. We simulate the eye model by using
the typical eye parameters listed in [Guestrin and Eizenman 2006].
The cornea is modeled as a sphere with a radius of 7.8mm and the
distance from pupil center to corneal center is 4.2mm. The effec-
tive index of refraction is modeled as 1.3375. We use the left eye
for evaluation. The visual deviation between visual axis and opti-
cal axis is 5◦ for horizontal angle and 1.5◦ for vertical angle. In
the simulation, given a fixed head position, we rotate along the eye-
ball rotation center (not the corneal center) so that the visual axis
intersects with the target gaze point on the screen.

Calibration and testing process During the calibration process,
the subject is asked to gaze at a regular n×n, n ∈ {2, 3, 4, 5} grid
pattern that is uniformly distributed over the screen. In the testing,
a uniformly distributed 5× 5 grid on the screen was used.

3.2 Stationary Head

Sensitivity to eye parameters We first examine the sensitivity
of the proposed method to different eye parameters. Starting with
typical eye parameters (corneal radius Rc = 7.8mm, distance from
corneal center to pupil center K = 4.2mm, horizontal and vertical
angular deviation α = 5◦ and β = 1.5◦), we vary the value of each
eye parameters with [-30, 30]% of the original values. We show the
gaze prediction accuracy at the calibration position in Figure 6. As
CR-DD [Coutinho and Morimoto 2010] is a depth-adaptive exten-
sion of CR-DV [Coutinho and Morimoto 2006], their performances
are nearly identical at the calibration position. Compared with the
other three methods [Coutinho and Morimoto 2006; Hansen et al.
2010; Coutinho and Morimoto 2010], our adaptive homography is

stable across different eye parameters with slight accuracy improve-
ments.

(a) Rc (b) K

(c) α (b) β

Figure 6: Sensitivity to eye parameters. (a) Corneal radius Rc.
(b) Distance from corneal center to pupil center K. (c) Horizontal
angular deviation between visual and optical axis α. (d) Vertical
angular deviation between visual and optical axis β

Number of calibration points Figure 7 shows the accuracy of
the methods as a function of the calibration points on the screen.
The method in [Coutinho and Morimoto 2006] does not benefit
much from increasing the number of calibration points due to the
use of only scale and translational correction. Our method pro-
vides extra accuracy over the homography-based method [Hansen
et al. 2010] because the adaptive homography also accounts for the
spatially-varying gaze errors predicted by the pupil position in the
normalized space xg.

3.3 Head Movements

Robustness to head movement is one of the most challenging objec-
tives of gaze trackers. In the following, we demonstrate the influ-
ences of head movements away from the calibration position. We
also examine several coupling factors in the case of the depth vari-
ation to better characterize the properties of the gaze trackers.
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Figure 8: Eye gaze prediction accuracy under head movements in X, Y, Z directions. First row calibrated at (0, 50, 600)mm. Second row:
calibrated (50, 100, 700)mm.

Figure 7: Accuracy as a function of the number of calibration
points on the screen.

Head movements in three different directions We first test
the eye gaze prediction accuracy in the noiseless environment.
The virtual subject is calibrated at the default head positions
(0, 50, 600)mm and (50, 100, 700)mm. After calibration, we then
move the virtual subject along three directions, X , Y , and Z from
−250mm to 250mm with a step size 50mm. Figure 8 shows the
effect of head movement in three directions for both initial calibra-
tion positions. The results show that the proposed adaptive homog-
raphy method is robust to head movements in all three head move-
ment directions. The performance of the methods [Coutinho and
Morimoto 2006; Hansen et al. 2010] that do not account for head
movements decay rapidly when the subject moves away from the
calibrated position. This issue is particularly severe along the depth
variation. For example, for a subject moving toward the screen
by 250mm, the gaze prediction errors by [Coutinho and Morimoto
2006; Hansen et al. 2010] increase rapidly to more than 5◦. In
contrast, our method remains stable with gaze error less than 2◦ at
this extreme case. For head movements parallel to the screen, our
method achieves less than 0.3◦ errors for all head positions. The
depth adaptive method in [Coutinho and Morimoto 2010], however,
is not robust to such movements. We also note that our method is
insensitive to the initial calibration position. We observe similar re-
sults for both calibration positions (0, 50, 600)mm in the first row
and (50, 100, 700)mm in the second row.

Influence of Noises We investigate the stability to noise level
of our gaze tracking system. We set the sensor resolution as
1980 × 1080 and focal length 13mm for sufficient field-of-view.
We use independently added Gaussian distributions as noises in lo-
calizing the eye features, e.g., glints and pupil center, with three
different levels of standard deviations: σ = {0.1, 0.5, 1}. Fig-
ure 9 shows the gaze prediction accuracy under three different lev-
els of noise. The benefits of our adaptation become less obvious
for higher noise levels because the noises also negatively affect the
adaptation prediction.

Sensor resolution and head movements It is of interest how
the sensor resolution affects the performance. This evaluation pro-
vides a reference for choosing a suitable sensor resolution to meet
the required accuracy. We fix the image noise to have standard de-
viation of 0.5 pixels and examine the performance under five image
resolutions: 640 × 480, 1280 × 720, 1920 × 1080, 2880 × 1620
and 3840× 2160. With 13mm focal length, the diagonal distances
of the glint quadrilateral are around 8, 17, 25, 40, and 50 pixels for
the five image resolutions, respectively. The image noise is added
independently to each glint position and pupil center position. All
the results are computed by averaging over 30 trials. We show two
sets of results on sensor resolutions: 1) at the calibration position
and 2) away from the calibrated position. First, we show in Fig-
ure 10 the gaze accuracy at the calibration position under various
sensor resolutions. Second, Figure 11 shows the gaze accuracy at a
new head position. Figure 10 suggests that for cameras with 13mm
focal length, sensor resolution of size 1920 × 1080 is required for
accuracy under 1◦. With larger focal length (e.g., 35mm), a lower
resolution of 640× 480 may be sufficient.
4 Evaluation using a Physical Setup
4.1 Setup

The physical setup consists of a 21 inch screen, with a total of 8 IR
LED lights located on the four screen corners and the middle points
of each edge of the screen border. The purpose of using 8 IR LED
lights instead of 4 is to increase the robustness in glint detection. We
use a CMOS point grey camera with 1/1.8” sensor of 1280× 1080
pixels and Fujinon 3 MP Lens and with focal length set to be 13mm.



(a) σ = 0.1 (b) σ = 0.5 (c) σ = 1

Figure 9: Accuracy under head movements for different levels of noise. (a) σ = 0.1 (b) σ = 0.5 (c) σ = 1

f = 13mm f = 35mm

Figure 10: The influence of sensor resolution on gaze accuracy at
the calibration position.

f = 13mm f = 35mm

Figure 11: The influence of sensor resolution on gaze accuracy at
new head position.

The camera is located around 5cm below the middle point of the
bottom edge of the screen and 15cm away from the screen plane.
The subject is roughly located along the axis perpendicular to the
screen center. At each position, a chin rest is used to support the
subject’s head during capturing eye images. However, there are
still inevitable head movements during calibration and testing.

For data collection, we ask the subjects to gaze at a uniformly dis-
tributed 5×5 grid on the screen and record the captured eye images.
We gather a maximum of 60 samples (2-3 seconds) for each gaze
target position. To avoid capturing the eye images during the tran-
sition of the eye gaze, we show the next target first and record eye
images for the next target “after” the subject clicks the mouse. After
capturing these eye images, we then extract the glints using image
thresholding and detect pupil center with ellipse fitting.

4.2 Experiments

Based on the physical setup, we compare our method with the
homography-based method CR-HOM [Hansen et al. 2010]. All
other cross-ratio methods including CR-Multiα [Yoo and Chung
2005], CR-DD [Coutinho and Morimoto 2006], CR-DV [Coutinho

and Morimoto 2010], and PL-CR [Coutinho and Morimoto 2012]
require additional on-axis ring right for generating projection of the
corneal center.

We present two sets of experiments using data from a physical
setup. First, we show the accuracy improvement at the calibration
position. Figure 12 shows the performance comparison with CR-
HOM [Hansen et al. 2010] using a series of subject-dependent cali-
brations at different depth positions. The computed bias-correcting
homography H∗NL is the same for both CR-HOM and our method.
However, we can see from Figure 12 that the accuracy at the calibra-
tion position of our adaptive homography consistently outperforms
that of the CR-HOM [Hansen et al. 2010] at all depth positions.
The gaze prediction accuracy values reported here are computed by
averaging the gaze errors in degree using all raw samples, i.e., no
temporal smoothing or post-processing are used.

Figure 12: Accuracy at the calibration position. Both CR-HOM
and our adaptive homography use the same bias-correcting homog-
raphy.

Figure 13 shows a qualitative comparison to demonstrate the effec-
tiveness of compensating spatially-varying gaze errors. The black
border indicates the screen border, the green dots are the targeted
gaze positions and the red dots are the gaze prediction. For two tar-
get positions, there are no samples recorded due to eye blink or the
occlusion of eye lid. Comparing Figure 13 (a) and (b), we observe
that the predicted gaze points seem to have a curved pattern in (a).
The curved pattern is known as the spatially-varying errors due to
the non-coplanarity of pupil center and the glint plane and cannot
be compensated using a single homography transformation. Our
method “rectifies” the gaze prediction through the use of adaptive
homography predicted by the pupil center position.
The goal of the second experiment is to validate the ability to com-
pensate errors induced from head movements. Because both CR-
HOM [Hansen et al. 2010] and CR-AH are robust with regards to
head pose changes parallel to the screen plane, we show the com-
parison on accuracy as a function of depth variations. Figure 14



(a) CR-HOM [Hansen et al. 2010] (b) CR-AH (Ours)

Figure 13: Qualitative comparison on calibration accuracy.

shows the gaze prediction accuracy under head movements. The
subject is calibrated at 500mm and 600mm away from the screen,
respectively. The gaze prediction accuracy are then evaluated for
data at three depth positions: 500mm, 600mm, and 700mm. Both
methods achieve the lowest errors at the calibration positions. The
performance degrades as the subject moves away from the calibra-
tion. However, we can see that the adaptive homography is more
robust to the head pose changes than CR-HOM. For example, when
the subject (calibrated at 600mm) moves to 500mm, our adaptive
homography reduces 40% of the errors from CR-HOM. One inter-
esting observation from Figure 14 is that both methods work poorly
and ours is a little bit worse when the subjects are located at 700
mm. We attribute this to the insufficient camera resolution for de-
tecting pupil center and glints position reliably. This result bears
some similarity as in the noise analysis experiments using simula-
tion (Figure 9 and 10). For example, in Figure 9(c), all the gaze
tracking algorithms perform poorly in the high noise level when the
head positions are too far from the camera. The unreliable input
to our adaptive homography model in the very low resolution case
apparently does not produce improvement.

(a) calibrated at 500 mm (b) calibrated at 600 mm

Figure 14: Averaged gaze estimation errors under head move-
ments.

5 Conclusion
We have introduced a learning-based adaptation for simultaneously
improving the accuracy and robustness of CR-based gaze tracking
methods. The adaptive homography simultaneously compensates
both spatially-varying gaze errors and head pose dependent errors
in a unified framework. Through learning from simulation, we
can effectively model how the bias-correcting homography should
change depending on the head pose and gaze direction without go-
ing through an additional subject-dependent calibration procedure.
We have validated the effectiveness of the adaptation using both
simulated data and real data from a physical setup.
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