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ABSTRACT
In this paper, we propose a new re-coloring algorithm to enhance

the accessibility for the color vision deficient (or colorblind). Com-
pared to people with normal color vision, people with color vision
deficiency (CVD) have difficulty in distinguishing between certain
combinations of colors. This may hinder visual communication ow-
ing to the increasing use of colors in recent years. To address this
problem, we re-color the image to preserve visual detail when per-
ceived by people with CVD. We first extract the representing col-
ors in an image. Then we find the optimal mapping to maintain
the contrast between each pair of these representing colors. The
proposed algorithm is image content dependent and completely au-
tomatic. Experimental results on natural images are illustrated to
demonstrate the effectiveness of the proposed re-coloring algorithm.

Index Terms— Assistive technology, Image enhancement,
Color vision deficiency.

1. INTRODUCTION

In recent years, due to the availability of color printers and display
devices, the use of colors in multimedia contents to convey rich vi-
sual information has significantly increased. It becomes more impor-
tant to utilize colors for effective visual communication. However,
people with color vision deficiency (CVD) have difficulty in distin-
guishing between some colors that are contrasting and perceptible to
people with normal vision. We show in Fig. 1 an example of how
CVD people perceived colors. The image in the left is the original
image perceived by people with normal vision, and the visual infor-
mation can be easily interpreted. On the other hand, critical color
information may disappear or become indistinct in the six images in
the right, which are the simulation results for people with various
types of color vision deficiency.

To understand CVD, we must understand how the human color
vision works. Normal color vision is based on the absorption of
photons by three different types of fundamental photoreceptor cells,
the cone cells. The three classes of cones have different spectral
sensitivities with peak responses lying in the long- (L), middle-(M),
and short-(S) wavelength regions of the spectrum, respectively. The
energy received by the L, M, and S cones can be computed by a
numerical integration over the wavelength λ:

[L, M, S] =

∫
E(λ)[l(λ), m(λ), s(λ)]dλ, (1)

where E(λ) is the spectral power distribution of the light and
l(λ), m(λ), s(λ) are the fundamental spectral sensitivity functions
for L-, M-, and S-cones.
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Fig. 1. Original color image and the simulation results for various
types of color blindness. Image in the left is the original color image
perceived by people with normal vision, while the six images in the
right are the simulation results.

CVD results from partial or complete loss of function of one
or more types of cone cells. There are three major types of CVD:
anomalous trichromacy, dichromacy, and monochromacy. Anoma-
lous trichromacy, a mild color deficiency, is often characterized by
the defect of one of the three cones. The three types belonging to this
category are protanomaly, deuteranomaly, and tritanomaly, depend-
ing on deficiency in L-, M-, or S- cones, respectively. Dichromacy,
a more severe color deficiency, is present when one of the three cone
types is absent. Protanopia, deuteranopia, or tritanopia has no L-
, M-, or S- cone, respectively. Monochromacy is the severest but
rarest type of CVD, lacking all types of cone cells and perceiving
brightness variation only. In this paper, we focus on dichromacy.

There have been several works that attempt to simulate color
deficient vision. Among them, the computational model of CVD
proposed by Brettel et al. [1] was widely adopted. In [1], the com-
putational model of CVD was formulated in the three dimensional
LMS space, where three orthogonal axes L, M, and S represent the
responses of the three different cones. Based on the success in sim-
ulating the color perception of people with CVD, one can attempt to
provide a better color representation for the colorblind.

Many works have been devoted to addressing CVD accessibil-
ity. We classify them into two main categories: 1) tools that pro-
vide guidelines for designers to avoid ambiguous color combina-
tions, and 2) methods that (semi-)automatically reproduce colors
suitable for CVD viewers. Methods in the first category assist de-
signers in color reproduction by providing guidelines, or using a re-
stricted CVD palette, or verifying color schemes. However, it still
takes a lot of effort to select colors that are visually friendly for CVD
viewers. Moreover, these methods cannot be applied to existing nat-
ural images.Methods that semiautomatically re-color images for ac-
commodating the colorblind provide a few parameters for users to
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adjust the color mapping [2–4]. However, the results are sensitive to
the selection of the parameters and improper parameters may result
in unnatural images.

Recently, automatic re-coloring algorithms for CVD viewers
have been proposed [5–10]. Believing that the differentiation of
colors is more important than the identification of colors, these ap-
proaches aimed at preserving color contrast in the image for CVD
people. They have similar process flow: 1) Describe the color in-
formation in the original image through color sampling to alleviate
the computational burden. These representing colors are called “key
colors”. 2) Define the target distance. The Euclidean distance be-
tween two key colors in the color space is usually used. 3) Obtain
the optimal mapping of these key colors through minimizing the dif-
ference between the original distances and the perceived distances
by CVD viewers for every pair of key colors. 4) Interpolate be-
tween the corrected key colors through a distance-weighted nearest
neighbor interpolation to compute the final CVD corrected image.

Although these approaches can automatically re-color an image
into a suitable form for people with CVD, two significant problems
remain. The first problem is that representing color information in
the original image using color quantization may not be depictive
enough. Yet, using too many (e.g. 256) key colors may result in
pretty unnatural color images to both people with normal vision and
people with CVD. For example, the colors of one object may be
quantized into a few key colors. However, after computing the opti-
mal mapping of the whole set of key colors, these key colors may be
separated far apart even though originally they are near in the color
space. In this case, artifacts may appear in the re-colored image (see
the unnatural color on the blue pencil in Fig. 4 (e)).

The second problem with existing approaches is that the re-
coloring process is excruciatingly slow, which prohibits itself from
many applications. As noted in [6], solving the optimal mapping
over a quantized set of 256 key colors requires more than 20 sec-
onds, and the interpolation step takes a few minutes. In [8, 9], only
a small number (less than 25) of key colors can be used due to the
expensive computational complexity of the algorithm.

In this paper, we present an efficient and effective re-coloring al-
gorithm for people with CVD. We propose to represent the color in-
formation using the Gaussian Mixture Model (GMM), which is more
depictive than color sampling strategy used by previous works. The
center (i.e. the mean vector) of each Gaussian is analogous to the key
colors used by previous approaches. The main difference is that the
GMM also encodes the range information (i.e. the covariance ma-
trix) of the key colors. We use the Expectation-Maximization (EM)
algorithm to estimate the parameters of the GMM. The optimal num-
ber of Gaussians in the mixture is determined by applying the Mini-
mum Description Length (MDL) principle [11]. Since we represent
each key color using a Gaussian distribution, the “distance” between
a pair of Gaussians can be computed by the symmetric Kullback-
Leibler (KL) divergence. In previous works, every key colors are of
the same importance.We introduce a new weighting method of col-
ors and incorporate their importance for people with CVD into our
optimization process. In the interpolation stage, we interpolate col-
ors according to their posterior probabilities of each Gaussian and
the corresponding mapping to ensure the local color smoothness in
the re-colored image.

The remainder of this paper is structured as follows. The detail
procedures of the proposed re-coloring algorithm are introduced in
Section 2. Section 3 presents the experimental results. Section 4
concludes this paper.

2. THE PROPOSED COLOR REPRODUCTION
ALGORITHM

Re-coloring an input color image involves four steps: (1) Extract the
L*a*b* value in the CIEL*a*b* color space for each pixel as the
color feature; (2) Group these color features into clusters by mod-
eling the distribution using the GMM-EM approach; (3) Relocate
the mean vector of every Gaussian component for a specific type of
CVD through an optimization procedure; and (4) Perform Gaussian
mapping for interpolation.

2.1. Image Representation via Gaussian Mixture Modeling

For each pixel in the image, we extract the color feature in the
CIEL*a*b* color space, where the perceptual difference between
any two colors can be approximated by the Euclidean distance be-
tween them. To model the underlying color distribution, we assume
that the distribution can be well approximated by K Gaussians. The
probability density is of the form:

p(x|Θ) =
K∑

i=1

ωiGi(x|θi), (2)

where x is the color feature vector, ωi represents the mixing weight
of the ith Gaussian, Θ is the parameter set (ω1 . . . ωK , θ1 . . . θK ),
and Gi is a 3D normal distribution with parameter θi = (μi, Σi).
We initialize the values of the K mean vectors and covariance matrix
by the K-means algorithm. Then, the EM algorithm can be used for
GMM estimation.

E-step: Given the parameter set Θold, the probability of color
feature xj belonging to the ith Gaussian is calculated as:

p(i|xj , Θ
old) =

ωiGi(xj |θi)∑K
k=1 ωkGi(xj |θk)

. (3)

M-step: The parameters of the model (i.e. mean vectors, covari-
ance matrix, and mixing weights) are re-estimated by the following
update equations:

ωnew
i =

∑N
j=1 p(i|xj , Θ

old)∑K
i=1

∑N
j=1 p(i|xj , Θold)

, (4)

μnew
i =

∑N
j=1 p(i|xj , Θ

old)xj∑N
j=1 p(i|xj , Θold)

, (5)

Σnew
i =

∑N
j=1 p(i|xj , Θ

old)(xj − μnew
i )(xj − μnew

i )T

∑N
j=1 p(i|xj , Θold)

(6)

where N is the number of pixels in the image. This update scheme
allows for full covariance matrices. However, for computational ef-
ficiency, we restrict the the covariance to be diagonal matrix. While
this is certainly not the case, the assumption allows us to avoid a
costly matrix inversion at the expense of accuracy. The E-step and
M-step are iterated until convergence or after 10 iterations.

We select the optimal value of K by applying the MDL principle
[11], which suggests that the best hypothesis for a set of data is the
one that achieves the largest degree of compression. We choose K
to maximize logL(Θ|X ) − mK

2
log N, where logL(Θ|X ) is the

log likelihood, and mK is the number of parameters of the model
with K Gaussians. In this paper, we have mK = 7K−1 (K−1 for
weights, 3K for means, and 3K for variances). For our experiments,
K ranges from 2 to 6.
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Fig. 2. Color distributions in the CIEL*a*b* color space in the im-
age “flower” (see the second row of Fig. 3 (a)).

2.2. Target Distance

In the previous approaches, the distance between each pair of key
colors is computed using Euclidean distance in the color space. As
described in the previous subsection, we generalize the concept of
key color from “point” to “cluster”. Hence, the distance between
two key colors is generalized from “point to point” to “distribution to
distribution”. We show in Fig. 2 the distributions in the CIEL*a*b*
color space, where each color is assigned to the most probable Gaus-
sian in the mixture. We can see that the variances vary from cluster
to cluster. In this case, Euclidean distance between key colors is not
informative since the variance information is completely ignored.
For example, the distance between two highly compact (i.e. small
variance) clusters should be larger than the distance between two
less compact (i.e. larger variance) clusters with the same means. To
overcome the insufficiency of the Euclidean distance, we measure
the distance between each pair of clusters by the symmetric KL di-
vergence.

The KL divergence (or relative entropy) is a measure of the
dissimilarity between two probability distributions. Given two
probability distributions Gi and Gj , the symmetric KL divergence
DsKL(Gi, Gj) can be written as:

DsKL(Gi, Gj) = DKL(Gi||Gj) + DKL(Gj ||Gi), (7)

where DKL(·||·) represents the KL divergence.

Since each cluster is modeled as a multivariate Gaussian distri-
bution, the analytical solution exists and can be computed efficiently:

DsKL(Gi, Gj) = (μi − μj)
T (Σ−1

i + Σ−1
j )(μi − μj)+ (8)

tr(ΣiΣ
−1
j + Σ−1

i Σj − 2I),

where tr(·) stands for the trace and I is a 3×3 identity matrix.

2.3. Solving the Optimization

The goal of the proposed re-coloring algorithm is that the symmetric
KL divergence between each pair of Gaussians in the original image
will be preserved in the recolored image when perceived by people
with CVD. In other words, the original color contrasts which may
disappear due to CVD will be preserved in the corrected image for
CVD people.

We define the color mapping functions Mi(·), i = 1, . . . , K for
each Gaussian distribution. The mapping function Mi(·) relocates
the mean vector while maintaining the covariance matrix of the ith
Gaussian distribution. In the case of re-coloring natural images, our
goal is to maintain, not to enhance, the original contrast in the im-
age. To avoid producing an unnatural corrected image, we restrict
the mapping functions to be rotation operators in the a*b* plane.

Therefore, each mapping function can be parameterized by only one
angle variable.

The error introduced by the ith and jth key colors is defined as:

Ei,j = [DsKL(Gi, Gj)−DsKL(Sim(Mi(Gi)), Sim(Mj(Gj)))]
2,

(9)
where Sim(·) represents the simulation function of CVD percep-
tion [1]. Note that the covariance matrix after applying the function
Sim(·) is approximated by clustering the colors in the simulated
image using the same class probability p(i|x, Θ) as in the original
image.

The objective function can be computed by summing all errors
introduced by each pair of key colors. However, the key colors are
assumed to be of the same importance. This may introduce unex-
pected effect to the optimization process if the image is rich in col-
ors. Hence, we make a minor modification by assigning weights to
the key colors. We emphasize those colors under significant color
shift when perceived by people with CVD. In other words, colors
that are similar with the corresponding simulated colors (e.g. col-
ors with little chromaticity) will be assigned small weights and thus
need not be corrected, and vice versa. We denote the weight of the
jth color feature as αj :

αj = ||xj − Sim(xj)||, (10)

where || · || is the Euclidean norm.
With the weights of the color features, we can then compute the

weight of each key colors (denoted as λi for the ith cluster) as:

λi =

∑N
j=1 αjp(i|xj , Θ)∑K

i=1

∑N
j=1 αjp(i|xj , Θ)

. (11)

Therefore, the objective function can be written as:

E =

i=K∑
i=1

j=K∑
j=i+1

(λi + λj)Ei,j . (12)

In this way, the optimization will focus more on those colors that
suffer greater changes when perceived by people with CVD , while
leave insignificant colors unchanged.

Here, we have a multi-variant non-linear function. It is difficult
to solve the minimization problem using analytical techniques due
to the irregularity of the simulation function Sim(·). We thus adopt
the direct search optimization method [12]. We set various initial
changes to the variables and run the optimization process many times
to avoid being trapped in local minima. The result with the lowest
error is chosen for re-coloring.

2.4. Gaussian mapping for Interpolation

Our mapping is restricted to a rotation in the a*b* plane. Hence, the
mapping works in the CIE LCH color space, where L is lightness
(equal to L∗ in CIE LAB), C is chroma, and H is hue. The lightness

L* and the chroma C is unchanged: T (xj)
L∗

= xL∗
j and T (xj)

C =

xC
j , where T (xj) denotes the transformed color. After obtaining the

optimal mapping function Mi(·), i ∈ {1, . . . , K}, we can compute
the hue of the transformed color as:

T (xj)
H = xH

j +

K∑
i=1

p(i|xj , Θ)(Mi(μi)
H − μH

i ). (13)

The hue shift of a color depends on the posterior probability of each
Gaussian and the corresponding mapping function. This ensures the
smoothness after the re-coloring process, especially in regions rich
in colors.
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3. EXPERIMENTAL RESULTS

We have implemented and tested our algorithm using C++ on a Pen-
tium 4 3.4GHz PC. It takes O(KN) for key color extraction using
GMM, O(K2) for optimization process, and O(KN) for interpo-
lation, where K represents the number of Gaussian in the mixture,
and N is the number of pixels in the image. By generalizing the
concept of key colors, we show the image color distribution can be
modeled using a small number of Gaussians. Re-coloring an image
with 300×300 pixels takes less than 5 second without spending any
effort on improving the speed of optimization. The computation time
is significantly faster than previously published works [6–9] (a few
minutes or more).

Since it is difficult to gather various types of color-deficient
viewers to evaluate our method, we use the computational model
to simulate color perception of people with CVD in [1]. We show
in Fig. 3 some sample results on re-coloring natural images for ac-
commodating the colorblind. Fig. 3 (a) present three original color
images. The simulated views of protanopia (first row), deuteranopia
(second row), and trianopia (third row) are shown in Fig. 3 (b). We
can see that important visual details in the original color image are
lost in the simulated view of people with CVD. Fig. 3 (c) shows the
simulation results of our re-colored images. Note that the contrast
information in the original images can be well preserved and the
recolored images are natural.

In Fig. 4, we demonstrate comparison with the method proposed
by Jefferson et al. [9]. Fig. 4 (a)(b) show the original color image
and its simulation result of people with tritanopic deficiency. The
re-colored result by our method and its simulated view are present in
Fig. 4 (c) and (d). Fig. 4 (e)(f) show the re-colored results by Jeffer-
son et al [9]. We can see that in Fig. 4 (d) and (f) both approaches
provide a better information content for the tritanopia. However, the
colors in the re-colored image are pretty unnatural and the luminance
of the re-colored images are inconsistent with the original one. Com-
pared with their method, our re-coloring algorithm produces more
perceptually pleasing images.

4. CONCLUSIONS

In this paper, we propose a novel re-coloring algorithm for people
with CVD. We have contributed to the state-of-the-art in three issues:
1) we have generalized the concept of key colors in the image; 2)
we have proposed to measure the contrast between two key colors
by computing the KL divergence; and 3) we have shown that our
method can interpolate colors to ensure local smoothness with a few
key colors. We have demonstrated the effectiveness of the proposed
algorithm by re-coloring some natural images.
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