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1 Overview

In this supplementary material, we present four sets of additional results.

1. We show cycle detection results using the proposed unsupervised constraint
mining approach on the large-scale ImageNet 2012 dataset as well as three
image datasets with generic objects (CIFAR-10), fine-grained objects (CUB-
200-2011), and scene classes (MIT indoor-67), respectively.

2. We show examples of easy negative image pairs (i.e., image pairs with large
Euclidean distance in the feature space) and hard negative sample pairs (i.e.,
image pairs with large geodesic distance in the k-NN graph).

3. We show additional qualitative results and a detailed quantitative evaluation
for the unsupervised feature learning task.

4. We report detailed quantitative results on three image classification datasets
for the semi-supervised learning task.

2 Cycle detection

We show cycle detection results using the proposed unsupervised constraint min-
ing method on the ImageNet (Fig. 2), CIFAR-10 (Fig. 3), CUB-200-2011 (Fig. 4),
and MIT indoor-67 (Fig. 5) datasets. For all these results, we set the number
of nearest neighbors k = 4 and the length of the cycle n = 4 in the mining al-
gorithm. The results show that cycle consistency captures semantic information
and helps mine positive image pairs with large appearance variations without
using any manual annotations.

3 Negative mining

Fig. 6 shows several examples of negative mining results on the ImageNet dataset.
Geodesic distance can discover hard negative image pairs with visually similar
appearances. These image pairs provide valuable information for learning effec-
tive representations.
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4 Evaluation on unsupervised feature learning

We demonstrate the quality of our learned representations on the ImageNet
dataset with both qualitative and quantitative experiments. For qualitative eval-
uation, Fig. 1 shows the learned filters of the first convolutional layer. Fig. 7
and Fig. 8 show nearest neighbor retrieval results on the ImageNet 2012 valida-
tion set. With our method of unsupervised feature learning, we are able to obtain
similar retrieval results as those obtained by the supervised pre-trained AlexNet
for a variety of visual categories. This demonstrates that our learned representa-
tions capture semantic information although class labels are not available during
the training stage.

For quantitative evaluation, we show in Table 1 the detailed classification
performance on the PASCAL VOC 2007 test set using the learned representa-
tions on ImageNet. The results show that our unsupervised trained CNN model
performs well for distinguishing visual categories on a particular dataset (51.8%
mAP on VOC 2007) and has good generalization capability. With fine-tuning
by the ground-truth image labels, the adapted representations achieve improved
classification performance (56.5% mAP). We also present the precision-recall
curves for each category in Fig. 9.

5 Evaluation on semi-supervised learning

We show detailed quantitative results on three image classification datasets in
the semi-supervised setting. For the three datasets used, we randomly select m
images per class in the training set as the partial annotated data.

We show boosted classification performance by incorporating the mined con-
straints on CIFAR-10 in Table 2, CUB-200-2011 in Table 3, and MIT indoor-67
in Table 4. We achieve higher accuracy over the baseline which directly uses the
limited labeled data to fine-tune the network. The results show that our method
mines new effective constraints beyond annotations for learning better feature
representations.

Fig. 1. Conv1 filters of the Siamese network learned in the unsupervised way.
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Fig. 2. Sample cycle detection results on the ImageNet dataset.
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Fig. 3. Sample cycle detection results on the CIFAR-10 dataset.
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Fig. 4. Sample cycle detection results on the CUB-200-2011 dataset.
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Fig. 5. Sample cycle detection results on the MIT indoor-67 dataset.
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(a) Easy negative image pairs

(a) Hard negative image pairs

Fig. 6. Examples of negative image pairs. (a) Image pairs with large Euclidean distance
have significant appearance differences. They are often easy samples which do not
provide much information for learning a good CNN representation. (b) Image pairs
with large geodesic distance are likely to belong to different visual categories but could
be visually similar in appearances.
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Fig. 7. Additional examples of nearest neighbor retrieval results. The query images are
shown on the left hand side. For each query, the three rows show the top 8 nearest
neighbors obtained by AlexNet with random parameters, AlexNet trained with full
supervision and AlexNet trained using our unsupervised method, respectively. We use
the FC7 features to compute Euclidean distance for all the three methods.
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Fig. 8. Additional examples of nearest neighbor retrieval results. The query images are
shown on the left hand side. For each query, the three rows show the top 8 nearest
neighbors obtained by AlexNet with random parameters, AlexNet trained with full
supervision and AlexNet trained using our unsupervised method, respectively. We use
the FC7 features to compute Euclidean distance for all the three methods.
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Table 1. Image classification performance using our unsupervised feature learning
method in terms of average precision (AP) on the VOC 2007 test set.

Methods aero bike bird boat bottle bus car cat chair cow

Unsup. 64.6 58.0 64.3 52.7 21.0 48.4 73.4 45.2 44.7 38.4
Unsup. + FT 73.5 66.1 62.5 59.4 17.4 49.8 76.1 53.0 44.6 39.6

Methods table dog horse mbike person plant sheep sofa train tv mAP

Unsup. 43.6 48.1 68.0 52.4 87.1 32.8 45.1 39.7 60.0 48.1 51.8
Unsup. + FT 53.4 50.7 74.1 67.9 84.7 41.4 48.8 40.9 72.5 54.5 56.5

Fig. 9. Precision-recall curves for each category on the VOC 2007 test set.
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Table 2. Mean classification accuracy on the CIFAR-10 dataset when m images per
class are annotated.

m=1 m=5 m=10 m=50 m=100 m=500

Baseline 26.6 40.7 56.1 69.5 77.4 84.1

Ours 34.1 53.8 65.4 73.7 79.2 84.5

Table 3. Mean classification accuracy on the CUB-200-2011 dataset when m images
per class are annotated.

m=1 m=5 m=10 m=20 m=30

Baseline 11.2 26.3 36.3 48.7 52.5

Ours 14.7 27.7 39.0 48.6 53.1

Table 4. Mean classification accuracy on the MIT indoor-67 dataset when m images
per class are annotated.

m=1 m=5 m=10 m=50 m=80

Baseline 16.3 32.0 39.6 56.7 59.8

Ours 19.5 33.5 43.5 57.4 60.6
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