

© 2016 Justin Koeln

HIERARCHICAL POWER MANAGEMENT IN VEHICLE SYSTEMS

BY

JUSTIN PETER KOELN

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

 Doctoral Committee:

 Professor Andrew Alleyne, Chair

 Professor Geir Dullerud

 Professor Philip Krein

 Associate Professor Dusan Stipanovic

 Professor Manfred Morari, ETH Zurich

 ii

Abstract

This dissertation presents a hierarchical model predictive control (MPC) framework

for energy management onboard vehicle systems. High performance vehicle systems such as

commercial and military aircraft, on- and off-road vehicles, and ships present a unique

control challenge, where maximizing performance requires optimizing the generation,

storage, distribution, and utilization of energy throughout the entire system and over the

duration of operation. The proposed hierarchical approach decomposes control of the vehicle

among multiple controllers operating at each level of the hierarchy. Each controller has a

model of a corresponding portion of the system for predicting future behavior based on

current and future control decisions and known disturbances. To capture the energy storage

and power flow throughout the vehicle, a graph-based modeling framework is proposed,

where vertices represent capacitive elements that store energy and edges represent paths for

power flow between these capacitive elements. For systems with a general nonlinear form of

power flow, closed-loop stability is established through local subsystem analysis based on

passivity. The ability to assess system-wide stability from local subsystem analysis follows

from the particular structure of the interconnections between each subsystem, their

corresponding controller, and neighboring subsystems. For systems with a linear form of

power flow, robust feasibility of state and actuator constraints is achieved using a constraint

tightening approach when formulating each MPC controller. Finally, the hierarchical control

framework is applied to an example thermal fluid system that represents the fuel thermal

management system of an aircraft. Simulation and experimental results clearly demonstrate

the benefits of the proposed hierarchical control approach and the practical applicability to

real physical systems with nonlinear dynamics, unknown disturbances, and actuator delays.

 iii

To my family, friends, and teachers.

 iv

Acknowledgements

First, I would like to thank my advisor, Dr. Andrew Alleyne, for his invaluable and

continuing commitment to help me reach my greatest potential. His mentorship over the last

several years has allowed me to make tremendous strides as a researcher. As a shining

example of what it means to be a leader, Dr. Alleyne has taught me priceless lessons that I

will take with me throughout my career. I am very honored to have his continued mentorship

throughout my career. I would also like to acknowledge the members of my doctoral

examination committee, Geir Dullerud, Philip Krein, Dusan Stipanovic, and Manfred Morari,

who have helped guide and strengthen my research with their own expertise.

I must also thank my family. My parents have always set an outstanding example and

truly are my biggest role models. They instilled in me the value of education and the

curiosity and determination required to become a successful researcher. They have always

been my biggest supporters and I would not be where I am without them.

These acknowledgements would not be complete without thanking my fellow Alleyne

Research Group (ARG) members. I consider myself extremely lucky to have had the

opportunity to work alongside 32 current, past, and visiting members of the ARG. Thank you

to Megan, Joey, and Sarah for such a great and memorable start to my grad school experience

with daily lunch breaks on Green street discussing the “interesting” TED talk I watched the

night before and our Friday evening pool sessions. Thank you to Kira, Dave, Neera, Tim,

Vikas, Bin, and Yangmin for making me feel so welcome when I first joined the lab and for

creating such a great lab dynamic with a social yet hardworking atmosphere. The example

you all set is something I will remember most about my time in ARG. Thank you to Matt,

Herschel, Bryan, Nanjun, Erick, Katie, and Lindsey for helping me carry on the wonderful

ARG culture and traditions. Your friendships and support kept me motivated and excited to

 v

come to work each day. It is rare to find such an amazing group of people who, even at the

end of a long day of working together, you want to go and grab dinner or a drink with. Thank

you to Ashley, Spencer, Xavier, Malia, Pamela, Oyuna, Nate, Sarah, Spencer, and Sunny, the

future of ARG, for reminding me how exciting grad school can be, constantly leaving me

pleasantly surprised, and reassuring me that the ARG culture and traditions that I enjoyed so

much will carry on. Finally, thank you to Kasper, Ugo, Ehsan, Kaveh, and Jose, for bringing

fresh perspectives and energy to the lab. I want to thank each one of you for making my time

at UIUC so enjoyable and hope we can continue to keep in touch as we go in our separate

directions. I especially want to thank Matt Williams and Herschel Pangborn for their years of

truly enjoyable daily collaboration and support.

Finally, I would like to acknowledge the support of the National Science Foundation

(NSF) Graduate Research Fellowship Program (GRFP), the Air Force Research Laboratory

(AFRL), and the NSF Engineering Research Center for Power Optimization of Electro

Thermal Systems (POETS) with cooperative agreement EEC-1449548. Their support has

given me the flexibility to conduct research which both interests me and is of value to

society.

 vi

Table of Contents

CHAPTER Page

LIST OF FIGURES ... xi

CHAPTER 1 INTRODUCTION ...1

1.1 Motivation and Background ..1

1.2 Research Objectives ..3

1.2.1 Problem Statement .. 3

1.2.2 Dissertation Scope .. 4

1.3 Organization of Dissertation ..5

1.4 Notation ..6

CHAPTER 2 GRAPH-BASED POWER FLOW SYSTEMS ...7

2.1 Power Flow Systems ...7

2.2 Modeling Objectives ...8

2.3 Graph-based Modeling ..9

2.4 Generic System Formulation ... 10

2.5 Modeling Features ... 13

2.5.1 Modularity .. 13

2.5.2 Energy Domain Agnostic .. 15

2.5.3 Timescale Agnostic ... 16

2.5.4 Variable Fidelity ... 17

2.6 Chapter Summary .. 18

CHAPTER 3 HIERARCHICAL MODEL PREDICTIVE CONTROL 19

 vii

3.1 Conceptual Framework.. 19

3.2 Hierarchical Control Advantages ... 21

3.3 Hierarchical Control Development Procedure .. 24

3.4 Graph-based System Model ... 25

3.5 System Decomposition .. 26

3.6 Graph-based Model Reduction .. 29

3.7 Controller Development .. 32

3.8 Numerical Example ... 35

3.9 Chapter Summary .. 40

CHAPTER 4 PASSIVITY-BASED STABILITY .. 42

4.1 Motivation ... 42

4.2 Background ... 42

4.3 Nonlinear Graph System Model... 43

4.4 Main Results ... 48

4.4.1 Passivity of Subsystems .. 48

4.4.2 Passivity of the System ... 52

4.4.3 Decentralized Closed-loop Stability .. 54

4.4.4 Hierarchical Closed-loop Stability ... 57

4.5 Numerical Example ... 58

4.6 Chapter Summary .. 63

CHAPTER 5 ROBUST FEASIBILITY ... 65

5.1 Motivation ... 65

5.2 Background ... 65

5.3 Linear Graph System Model .. 67

5.3.1 System Dynamics.. 67

5.3.2 Dynamic Timescales ... 70

5.3.3 Local Constraints .. 70

5.3.4 Nominal System .. 70

5.3.5 Control Objective .. 71

5.3.6 Feedback Integralization ... 71

 viii

5.4 Hierarchical Control Structure ... 72

5.4.1 Subsystem Interconnections .. 72

5.4.2 Control Structure... 73

5.4.3 Nominal Subsystems for Level N Controllers .. 74

5.4.4 Nominal Reduced Subsystems for Level i Controllers, i ∈ [1,N - 1] 74

5.5 Level N Controller Formulation ... 77

5.5.1 Error Subsystem .. 77

5.5.2 Constraint Tightening.. 79

5.5.3 Level N MPC Problem .. 80

5.6 Level i Controller Formulation (i ≠ N) ... 81

5.6.1 Constraint Tightening.. 81

5.6.2 Level i MPC Problem (i ≠ N, i ≠ 1).. 82

5.6.3 Level 1 MPC Problem ... 83

5.7 Recursive Feasibility ... 85

5.8 Numerical Example ... 87

5.9 Chapter Summary .. 94

5.10 Chapter Appendix.. 94

CHAPTER 6 GRAPH-BASED MODELING OF A THERMAL FLUID SYSTEM......... 96

6.1 Motivation ... 96

6.2 Background ... 96

6.3 Graph-based Modeling .. 97

6.3.1 Generic Graph Formulation ... 97

6.3.2 Hydraulic Graph Modeling .. 98

6.3.3 Thermal Graph Modeling .. 99

6.3.4 Multi-graph System Representation ... 100

6.4 Conservation-based Modeling ... 101

6.4.1 Mass Conservation .. 102

6.4.2 Thermal Energy Conservation ... 106

6.5 Linearization and Discretization .. 108

6.5.1 Hydraulic Graph Linearization .. 108

 ix

6.5.2 Hydraulic Graph Discretization ... 109

6.5.3 Thermal Graph Linearization .. 110

6.5.4 Thermal Graph Discretization ... 111

6.5.5 Actuator Dynamics ... 112

6.6 Experimental System Description .. 112

6.6.1 Overall System.. 113

6.6.2 Individual Components ... 113

6.7 Graph-based System Representation .. 115

6.7.1 Mass Conservation System .. 117

6.7.2 Thermal Energy Conservation System ... 117

6.8 Model Validation... 118

6.8.1 Hydrodynamic Validation ... 118

6.8.2 Thermal Validation ... 120

6.9 Chapter Summary .. 121

CHAPTER 7 HIERARCHICAL CONTROL OF A THERMAL FLUID SYSTEM 123

7.1 Motivation ... 123

7.2 Hierarchical Control Framework ... 124

7.2.1 Thermal Control Layer .. 124

7.2.1 Hydraulic Control Layer ... 126

7.2.1 Actuator Control Layer ... 128

7.3 Simulation Results ... 129

7.4 Experimental Results ... 133

7.5 Chapter Conclusions .. 136

CHAPTER 8 CONCLUSION .. 137

8.1 Summary of Research Contributions ... 137

8.2 Future Work .. 138

8.2.1 Techniques .. 139

8.2.2 Theory .. 140

8.2.3 Application ... 142

 x

REFERENCES.. 143

APPENDIX ROBUST HIERARCHICAL CONTROLLER CODE 149

 xi

List of Figures

Figure 1.1 Historical growth of onboard power for aircraft suggests effective power

management will continue to be critical to the overall increase in capabilities of

both military and commercial aircraft [6]. ...2

Fig 1.2 Vehicle systems are a complex combination of interacting systems and

subsystems over multiple timescales. ..3

Figure 1.3 Outline of developments required for the realization of hierarchical control

of power flow in vehicle systems. ...5

Figure 2.1 Notional system exemplifying the graph-based power flow representation

with key power flows and states highlighted in red. Dashed lines indicate elements

that serve as disturbances to the system. .. 11

Figure 2.2 Simple example system used to demonstrate the modularity of a graph-based

modeling framework. .. 13

Figure 2.3 Component graphs for each component in the example system. 14

Figure 2.4 Example system graph. .. 15

Figure 2.5 Two graph models for a cold plate heat exchanger, where the fluid

temperature is either represents as a single lumped temperature T or three distinct

temperatures , ,a b cT T T along the length of the heat exchanger. .. 17

Figure 3.1 Notional 5-level hierarchy with notional controller update rates for an

electrical and thermal system. ... 20

Figure 3.2 The effects of T on a centralized controller with regard to large known

disturbances and small high-frequency unknown disturbances compared to a

hierarchical control approach. ... 22

 xii

Figure 3.3 A system with two interconnected subsystems used to demonstrate the

ability of a hierarchical control framework to directly account for the coupling

between systems and subsystems. ... 24

Figure 3.4 Example system graph used to demonstrate the hierarchical control

development and performance. ... 27

Figure 3.5 Example three-level hierarchy, and corresponding information flow, with a

single vehicle-level controller, two system-level controllers, and four subsystem-

level controllers. ... 27

Figure 3.6 Individual subsystem graph representations for the example system. 29

Figure 3.7 System graph representations for the example system. ... 30

Figure 3.8 Vehicle graph representation for the example system. .. 31

Figure 3.9 Convergence results for centralized, decentralized, and hierarchical

controllers. .. 36

Figure 3.10 Disturbance profiles. .. 37

Figure 3.11 Disturbance rejection results for centralized, decentralized, and hierarchical

controllers. .. 37

Figure 3.12 Comparison of reference tracking error for centralized, decentralized, and

hierarchical controllers.. 39

Figure 3.13 Comparison of controller computation times for the centralized controller

with 10t and the hierarchical controllers. ... 40

Figure 4.1 Notional subsystem exemplifying the graph-based power flow representation

with key power flows and states highlighted in red. Dashed lines indicate elements

that serve as disturbances to the subsystem. .. 45

Figure 4.2 Notional interconnection between three subsystems demonstrating the key

interactions and relevant variables. ... 49

Figure 4.3 Block diagram for the subsystems from Fig. 4.2. ... 50

Figure 4.4 Block diagram showing the negative feedback connection between the

subsystem iS and the controller iC . For clarity of presentation, controllers 1iC

and 1iC for subsystems 1iS and 1iS are omitted from the diagram. 54

 xiii

Figure 4.5 Example hierarchical control structure used to improve control performance

via coordination among subsystems. Only controllers 3,1 4C require passivity

constraints, forming a stability-assurance layer. .. 58

Figure 4.6 Graph for example fluid tank system with four subsystems. 59

Figure 4.7 Decomposition of the example system graph into four subsystem graphs

used to develop the four decentralized MPC controllers. ... 60

Figure 4.8 Simple control hierarchy for the example system where 1 4C are passivity-

constrained decentralized MPC controllers and 0C is a centralized reference

generator (signal coloring is the same as Fig. 4.5). .. 62

Figure 4.9 Representative state trajectories for 2x and 10x with stable and unstable

reference generator formulations and for the nominal and passivity-constrained

MPC designs. ... 63

Figure 4.10 Trajectories for 1z for subsystem 1S with the stable and unstable reference

generator formulations and for the nominal and passivity-constrained MPC

designs. Note that these trajectories are plotted separately due to the disparity in

the magnitudes and sign of the trajectories for the nominal and passivity-

constrained scenarios. ... 64

Figure 5.1 Notional system exemplifying the graph-based power flow representation

with key power flows and states highlighted in red. Dashed lines indicate elements

that serve as disturbances to the system. .. 69

Figure 5.2 (a) The upper-level controller plans a feasible state trajectory at the slow

time step 1k but the lower-level controller is unable to track this trajectory at the

faster time step 2k without violating state constraints. (b) Using the feedback

integralization control law from (5.15), the system follows piecewise linear state

trajectories; thus any trajectory that is feasible at the slower time step 1k is also

feasible at the faster time step 2k 73

Figure 5.3 (a) An example system graph decomposed into subsystems. (b) The

interconnection of these subsystems is acyclic. ... 74

 xiv

Figure 5.4 Example 3-level hierarchy where 3N , 4subN , 2 3 3 , 2,1 {1,2}I ,

2,2 {3,4}I , and 1,1 {1,2,3,4}I . The notation ()ix k refers to a sequence of x

values at time steps { , , }i
i i pk k N . .. 75

Figure 5.5 Example system graph for numerical example. .. 88

Figure 5.6 Subsystem graphs for numerical example. ... 88

Figure 5.7 System graphs for numerical example. ... 89

Figure 5.8 Disturbance profile for numerical example with desired and actual inlet

power flows. ... 90

Figure 5.9 Nominal and actual inputs for edges 8e and 16e with the nominal input

constraint sets 8,16 , the tightened input constraint set 8,16
ˆ used by the

subsystem controllers at Level 3 and, and the tighten input constraint set ,8,16
ˆ

r

used by the vehicle controller at Level 1. .. 91

Figure 5.10 Nominal and actual state trajectories for vertex 11v with error set showing

the bounds on the deviation between 11x and 11x̂ for which the hierarchical

controller is robust. ... 92

Figure 5.11 Nominal and desired power flow trajectories along edge 4e with error set

showing the bounds on the deviation between 4P and 4P̂ for which the

hierarchical controller is robust. .. 92

Figure 5.12 Deviations between the desired and nominal power flows for edges 8e and

14e , which form
inP for Subsystem 3, with the set in for Subsystem 3. 93

Figure 5.13 Nominal and actual state trajectories for vertex 10v with error set showing

the bounds on the deviation between 10x̂ and ,10ˆlow
desx determined by the Vehicle

controller at Level 1. ... 94

Figure 6.1 Sample interconnection of thermal (top) and hydraulic (middle) graphs, with

actuator dynamics (bottom) affecting the hydraulic edge inputs. 100

Figure 6.2 Hydraulic and thermal graphs for individual components. 103

 xv

Figure 6.3 Example pump head map. .. 105

Figure 6.4 Candidate thermal power architecture for simulation and experimental

validation. ... 114

Figure 6.5 Individual components and specification with a 6” ruler for scale. 115

Figure 6.6 Hydraulic and thermal graphs for the example experimental system

configuration. ... 116

Figure 6.7 Pump PWM duty cycle inputs for hydrodynamic validation. 119

Figure 6.8 Selected outputs for hydrodynamic validation of experimental data with

linear graph-based models... 119

Figure 6.9 Pump and heater inputs for thermodynamic validation. .. 120

Figure 6.10 Selected temperatures for thermodynamic validation of experimental data

with linear graph-based models. .. 121

Figure 7.1 Three-level graph-based control hierarchy and signals. .. 124

Figure 7.2 Thermal disturbances for the simulation example, consisting of step changes

in heat load to each cold plate (CP) heat exchanger. .. 131

Figure 7.3 States of the linear plant in the closed-loop simulation example, including

cold plate wall temperatures (top) and a selection of outlet fluid temperatures

(bottom). ... 131

Figure 7.4 Fluid pressures at the outlet of each pump and inlet to heat exchanger 2

(top), mass flow rates at the outlet of each pump and inlet to heat exchanger 2

(middle), and pump input signals (bottom). ... 132

Figure 7.5 Close-up view of state signals for pump 5 showing the pump state reference

from the Hydraulic Control Layer, the commanded pump input by the Actuator

Control Layer, and the achieved pump state. ... 133

Figure 7.6 Measured heat load applied to each cold plate matching the disturbance

profile from Fig 7.2... 134

Figure 7.7 Measured temperatures from closed-loop control of the experimental system,

including cold plate wall temperatures (top) and a selection of outlet fluid

temperatures (bottom). .. 134

 xvi

Figure 7.8 Measured fluid pressures at the outlet of each pump and inlet to heat

exchanger 2 (top), measured mass flow rates at the outlet of each pump and inlet to

heat exchanger 2 (middle), and pump input signals (bottom). .. 135

Figure 8.1 Outline of developments required for the realization of hierarchical control

of power flow in vehicle systems. ... 139

Figure A.1 Structure of Matlab files used to generate the robust hierarchical controller. 149

Figure A.2 Structure of Matlab files called within the Simulink model used to simulate

the robust hierarchical controller. .. 150

Figure A.3 Simulink model used to simulate the robust hierarchical controller. 177

 1

Chapter 1

Introduction

1.1 Motivation and Background

Electrification of power systems is a societal megatrend, especially for vehicle systems

such as aircraft, on- and off-road vehicles, and ships. For example, the onboard power for both

military and commercial aircraft has grown rapidly over the last several decades (Fig. 1.1) and

this growth is expected to accelerate, with an anticipated order-of-magnitude increase in power

over the next 10 years [1]. With the majority of this power dedicated to onboard electrical

systems, managing the heat generated by these systems has already become a major barrier. With

the fuel in the F-35 and the cockpits of army helicopters overheating [2], [3], these highly

advanced systems are unable to achieve their intended function at the risk of navigation and

flight control systems shutting down midflight. In fact, over 50% of military electronics failures

are attributed to thermal management problems [4].

Technological growth is currently limited by inadequate thermal management, and

intelligent coordinated control is a crucial part of overcoming this barrier. In the absence of

system redesign, cooperative control of electrical and thermal systems is the key to overcoming

these barriers and maximizing the capability of these systems and the overall vehicle. As the

demand for both performance and efficiency of these systems grows, the optimization of power

generation, storage, distribution, and utilization becomes vital. Each vehicle is a system-of-

systems, where power flow occurs in various modalities such as electrical, mechanical, thermal,

and hydraulic. These systems interact with each other over a wide-range of timescales (Fig. 1.2)

including the sub-millisecond time frame of voltage regulation in an electrical system [5] to the

 2

Figure 1.1 Historical growth of onboard power for aircraft suggests effective power

management will continue to be critical to the overall increase in capabilities of both

military and commercial aircraft [6].

minutes time frame of fuel temperature changes in a thermal system [7]. Due to the size and

complexity of these systems, the system and control designs often occur in a “siloed” framework,

where each system is designed in isolation with limited design consideration regarding the

dynamic interactions between these systems [8].

Future system and control design must adopt an alternative design procedure where

system and subsystem interactions are directly considered and exploited in the design in order to

achieve greater performance and efficiency. With increasing electrification, the opportunity for

maximizing the performance of the aircraft as a whole hinges on the ability to coordinate the

electrical and thermal systems. Due to the complexity of these systems and the need for robust

operation under component failures, a distributed control approach is required. In such an

approach, various parts of the system are operated by dedicated controllers, which coordinate via

communication to meet system-wide objectives. Such control approaches will not only increase

the total power and power density of these systems, they will also make these systems easier,

safer, and cheaper to operate.

 3

Fig 1.2 Vehicle systems are a complex combination of interacting systems and subsystems

over multiple timescales.

1.2 Research Objectives

1.2.1 Problem Statement

Due to the long service life of many advanced vehicle systems, these systems are often

tasked with operating well outside their initial intended design space. In the absence of system

redesigns, the control system is responsible for improving vehicle capability, including

increasing range, maximizing system operation duty-cycles, and expanding the overall operating

envelop.

What is needed is a model-based anticipatory control strategy that directly considers

interactions between systems and can determine energy/power allocation strategies for each

system over a wide range of timescales. The primary objective of this dissertation is the

development and evaluation of a model predictive control (MPC) based hierarchical control

strategy specifically designed to optimize the power flow throughout the systems and subsystems

of a vehicle over multiple timescales. While the focus of this dissertation is on thermal

management in aircraft, the proposed hierarchical framework is developed to be:

 4

 widely applicable to heterogeneous power flow systems of various energy

domains, architectures, and components,

 scalable to large systems with many actuators, states, measurements, and control

objectives,

 robust to model and signal uncertainty,

 high performance, via fast transient response, efficient operation, and constraint

satisfaction, and

 computationally efficient for reduced computational cost and faster control

decisions.

1.2.2 Dissertation Scope

In order to meet this primary objective, five secondary objectives have been identified

which define the scope of this dissertation and, when achieved, will provide a generic

hierarchical control framework which can be adopted to improve the capabilities of a wide-range

of vehicle systems. These five secondary objectives are:

1. the formulation of a generic graph-based modeling framework that captures the

energy storage and power flow dynamics in multiple energy domains and

timescales with primary development and validation in the thermal domain,

2. the definition of a hierarchical control development algorithm with a step-by-step

procedure for generating a hierarchical controller, applicable to a wide-range of

vehicle systems with different architectures,

3. the formal analysis of the proposed hierarchical controller with respect to stability

and robust feasibility,

4. the evaluation of hierarchical control performance using a series of example

systems including simple educational examples and more realistic examples

representative of vehicle thermal management systems, and

5. the experimental demonstration of a hierarchical controller to test the applicability

of the proposed control approach to real-world thermal-fluid system dynamics

including nonlinearity, unknown disturbances, and time delays.

 5

Figure 1.3 Outline of developments required for the realization of hierarchical control of

power flow in vehicle systems.

1.3 Organization of Dissertation

Fig. 1.3 shows an outline of the techniques, theory, and application development that is

needed to realize the overall goal of this dissertation: hierarchical power management in vehicle

systems. The boxes and arrows outlined in red represent the developments and connections

presented in this dissertation, where the red number represents the corresponding Chapter

number. Chapter 2 introduces the general class of power flow systems and the graph-based

modeling framework used to capture the energy storage and routing throughout the vehicle

system. The model-based hierarchical control framework is presented in Chapter 3 with detailed

procedures for graph modeling, system decomposition, model reduction, controller structure

design, and optimization problem formulation. The procedures presented in Chapters 2 and 3

represent a set of generic techniques for modeling and control that are demonstrated through

numerical simulation and built upon throughout the following Chapters. These generic modeling

and control approaches are applied to a realistic thermal fluid system in simulation and

Development

Application

Theory

Techniques

Numerical

Simulation

Experimental

Demonstration

Hierarchical

Control of

Vehicle

Stability Feasibility

Graph-based

Modeling

Hierarchical

Control
Design

Optimization

Practical

Extensions

2 3

4 5

3,4,5 6,7

 6

experiment in Chapters 6 and 7. Specific formulations of these general techniques are used in

Chapters 4 and 5 and are tested in numerical simulation only. In particular, Chapter 4 analyzes

the closed-loop stability for a specific class of nonlinear graph-based power flow systems using

the notion of passivity. Using a constraint tightening procedure, Chapter 5 develops a robustly

hierarchical controller for linear graph-based power flow systems that guarantees feasibility in

the presence of model and disturbance signal uncertainty.

 The three black boxes to the right of Fig. 1.3 represent additional developments that

build upon the work presented in this dissertation, which are required to achieve highly

functional hierarchical control of vehicle systems. The Experimental Demonstration block and

arrow from Numerical Simulation are outlined with dashed red lines to denote the fact that the

basic techniques from Chapter 2 and 3 have been demonstrated on an experimental system, while

practical extensions are required to directly apply the theoretical results from Chapters 4 and 5 to

the physical system in Chapters 6 and 7. These extensions are discussed in greater detail with the

concluding remarks and future research directions provided in Chapter 8.

1.4 Notation

The symbol denotes the set of real numbers. The notation 1, N denotes the set of

integers from 1 to N . A vector v with elements iv is defined as iv v . Similarly, a matrix M

with elements jkm in the thj row and thk column is defined as jkM m . For the scalar

function f x , | 0f x x f x denotes the zero set of f x . The eigenvalues of

matrix
nnA are k A , 1,k n and their real part is denoted Re k A , 1,k n . For

sets , n , the Minkowski sum is | ,x y x y and for sets , the

Pontryagin difference is |nx x . For a set
n and the linear

mapping : n mA , |A Ax x . A set
n is robust positively invariant (RPI)

for a system 1 ,x k f x k w k if and only if for all x and all w it holds that

 ,f x k w k . The right inverse of
n mA is defined as

1
† T TA A AA

 .

 7

Chapter 2

Graph-based Power Flow Systems

2.1 Power Flow Systems

Power flow systems are a wide class of systems where modeling and control is motivated

by the need to manage the storage and routing of energy. Examples include thermal energy

systems [9]–[11], water distribution networks [12]–[14], electrical power grids [15], [16],

chemical process networks [17], [18], and multi-energy domain vehicle systems such as aircraft

[19]–[21], mining equipment [22], [23], on- and off-road vehicles [24], [25]. In general, these

systems function based on the storage, conversion, and routing of conserved quantities such as

mass and energy. For example, electrical systems store energy in capacitors and batteries, route

energy through wires using switches, and convert electrical energy into thermal energy in the

form of heat. Thermal fluid systems conserve both mass and thermal energy which are stored in

fluid tanks and heat exchangers, routed through pipes using pumps and valves, and reject heat to

the surrounding environment. A key feature of power flow systems is the dynamic interaction

between systems and subsystems of various energy domains through the conversion of conserved

energy.

For vehicle systems in particular, achieving peak performance often requires controlling

various systems and subsystems at the limit of their operating envelopes. Thus, system operation

is often characterized by operation against actuator and state constraints. Additionally, the

operation of these systems is highly coupled. For example, an electrical system generates heat

that is managed by the thermal system, but this thermal system uses electrical power to operate.

Thus higher electrical power results in higher heat generation which results in more electrical

 8

consumption by the thermal management system. Additionally, systems such as the electrical

system and the hydraulic system on an aircraft both take power off the engine, creating a

resource allocation problem based on the needs of each system and the maximum allowable

power draw from the engine.

The dynamics of each system and the interactions between systems of various energy

domains occur over a wide range of timescales including the sub-millisecond time frame of

voltage regulation in an electrical system [5] to the minutes time frame of fuel temperature

changes in a thermal system [7]. Effectively controlling the power flow system at each timescale

is critical to achieving robustness to disturbances and faults, maximizing transient performance,

and preventing constraint violations.

Due to the size and complexity of many power flow systems, the system and control

designs often occur in a “siloed” framework, where each of the systems and subsystems is

designed in isolation with limited design consideration regarding the interactions between these

systems and energy domains. Future system and control design must adopt an alternative design

procedure where the interactions are directly considered and exploited to achieve greater

performance and efficiency. A unified modeling framework that captures the dynamics of system

with multiple interacting energy domains is the enabling first step to achieving this coordination.

2.2 Modeling Objectives

Conventional approaches to modeling and control of complex system-of-systems are

often limited to decentralized high-fidelity modeling and robust, low performance proportional-

integral and logic-based control [26]. The proposed model-based hierarchical control approach

aims to improve performance through coordination among subsystems and timescales. With a

hierarchical MPC framework, each controller in the hierarchy requires a model of the system

dynamics under its control to predict future state trajectories and determine optimal control

sequences. For many power flow systems, holistic modeling, analysis, and control design is

inhibited by the complexity and size of the systems, especially when dynamics evolve over a

wide range of timescales and energy domains. Thus the main desired features for a control-

oriented modeling framework are:

 9

 modularity – such that large systems can be built from the combination of

individual components,

 energy domain agnostic – allowing systems with multiple, interacting energy

domains to be represented using a single, unifying modeling framework,

 timescale agnostic – providing a generic approach that captures dynamics over a

wide range of dynamically interacting timescales, and

 variable fidelity – both in terms of the number of states used to capture the

dynamics of each component and the complexity of the relationships used to

represent power flow (linear vs nonlinear vs bilinear).

As shown in the following Sections, a graph-based modeling framework provides each of these

features, resulting in an ideal framework for control-oriented modeling and the development of

hierarchical controllers for power flow systems.

2.3 Graph-based Modeling

From a bond graph perspective [27], power is the product of effort and flow, P e f .

Typical forms of effort include force and torque in mechanical systems, voltage potential in

electrical systems, pressure difference in hydraulic systems, and temperature difference in

thermal systems. The corresponding forms of flow are linear or angular velocity, current,

volumetric flow rate, and entropy flow rate, respectively. With power representing the transport

of energy, each domain also has the ability to store energy in the form of linear or angular

momentum, electrical charge, mass, or thermal energy.

While bond graphs are a powerful tool and can be used to derive the governing

differential equations for a dynamic system [27], an alternative, graph-based, system

representation and modeling technique has been widely adopted. Compared to bond graphs,

graph-based system model more readily captures the structure of the governing mass and energy

conservation laws for these systems. As will be shown in Chapters 3-5, the structure of these

graphs can be directly used for control architecture design and analysis. Graph-based modeling

approaches have been used in a variety of application areas such as chemical processing plants

[28], [29], building thermal systems [30], [31], electronic circuits [32], and flow control systems

[33]. In this graph-based framework, vertices, or nodes, represent capacitive elements that store

 10

energy and edges represent paths for power flow between these capacitive elements. The

following Section presents the generic graph-based modeling formulation and Section 2.5

demonstrates how this approach addresses each of the desired modeling features.

2.4 Generic System Formulation

Let a power flow system S be represented by an oriented graph ,= V E of order vN

with set of vertices , 1,i vV v i N and of size eN with set of edges , 1, .j eE e j N

Each oriented edge je E represents a path for power flow in S , where positive power jP

flows from the tail vertex
tail
jv to the head vertex

head
jv . Each vertex iv V has an associated

state ix that represents the amount of energy stored in that vertex. Thus the dynamic for the state

of each iv satisfies the energy conservation equation

 ,i i j j
in oute E e Ej ji i

C x P P

 (2.1)

where 0iC is the energy storage capacitance of vertex iv and |in head
i j j iE e v v and

 |out tail
i j j iE e v v are the sets of edges oriented into and out of the vertex iv , respectively.

The most general form for the algebraic relationship between the power flows along edge

je and the states
tail
jx and

head
jx is

 , , ,tail head
j j j j jP f x x u (2.2)

where ju is the actuator input associated with the edge. Common, increasingly simple, forms for

this power flow relationship are the nonlinear, input affine form

 , , ,tail head tail head
j j j j j j j jP f x x g x x u (2.3)

where jf and jg are nonlinear, the bilinear form

 11

 , , ,tail head tail head
j j j j j j j jP f x x g x x u (2.4)

where jf and jg are linear, and the linear form

 .tail head
j j j j j j j jP a x b x c u d (2.5)

In general, the system S has states Nvx that each satisfy (2.1) and power flows

NeP that each satisfy (2.2). The disturbances to S consist of how power enters and exits the

system with inlet power flows
Nin sP and sink states Nt tx . As indicated by the dashed

lines in Fig. 2.1, the inlet power flow edges are not included in . These power flows into the

system are analogous to demand in the network flow literature [33], [34] and inflows from the

compartmental systems literature [35].

Figure 2.1 Notional system exemplifying the graph-based power flow representation with

key power flows and states highlighted in red. Dashed lines indicate elements that serve as

disturbances to the system.

Also indicated by dashed lines in Fig. 2.1, the sink states are not states of S , but the sink

vertices and the edges connecting S to the sink vertices are included in . Power flows along

this type of edge, denoted
Nout tP , each follow the relationship from (2.2). These sink

vertices represent the surrounding environment and are referred to as external nodes in the

compartmental systems literature [33]. Finally, each system has a subset
Nin sx of the states

x which represent the states directly affected by the inlet power flows
inP .

P1
in

P2
in

x2
in

x1
in

P1
out

x1
t

S

x1

x2

x3

x4

x5

P1

P2

P3

P4

P5

P6

 12

Let

,
N N Nv t e

i jM m
 be the incidence matrix of graph [36] where

 ,

1 if is the tail of

1 if is the head of .

0 else

i j

i j i j

v e

m v e

 (2.6)

Then, based on (2.1), the system dynamics are

 ,
0

in

t

Cx D
MP P

x

 (2.7)

where iC diag C is a diagonal matrix of the vertex capacitances and ,
N Nv s

i jD d

where

 ,

1 if is the head of
.

0 else

in
i j

i j

v P
d

 (2.8)

Since tx are disturbances to the system, not states, M is partitioned as
M

M
M

, with

N Nv eM

 and N Nt eM

 , resulting in

 .inCx MP DP (2.9)

From this generic formulation, specific formulations are derived in Chapters 3-6.

For this dissertation, all inputs ju are assumed to be continuous between lower bound ju

and upper bound ju . As discussed in Section 8.2, future work should extend the proposed

modeling and hierarchical control approaches to systems with continuous as well as discrete

actuators, where the possible inputs values form a set of discrete values, such as the on/off states

of an electrical switch, 0,1ju . While the control optimization problem for a linear system

with continuous actuators can be formed as a quadratic programming (QP) problem, controllers

of systems with discrete actuators are formulated as mixed integer quadratic programming

(MIQP) problems, which require significantly more computational resources to solve.

 13

The system S is assumed to have N dynamic timescales, motivating the use of

hierarchical control, where each level of the hierarchy is responsible for control decisions for a

corresponding timescale. For a graph-based system, the timescales can be roughly identified by

the capacitance of the vertices. Thus the state vector is subdivided as

 1 2

T
T T T

Nx

x x x (2.10)

where
iNv

i x denotes a vector of states with the thi timescale,
1

N i
v vi

N N

 , and

j i kC C C for j jx x , i ix x , k kx x , j i k .

2.5 Modeling Features

The following demonstrates the features that make a graph-based modeling framework

well suited to modeling the dynamics of energy storage and power flow in a vehicle system.

2.5.1 Modularity

Each component of the system is modeled with a component graph of various vertices

and edges and the overall system graph is simply constructed through the connection of the

individual component graphs based on the system architecture. For a simple demonstration,

consider the system in Fig. 2.2 consisting of a pump, cold plate heat exchanger, reservoir, and

liquid-to-liquid heat exchanger.

Figure 2.2 Simple example system used to demonstrate the modularity of a graph-based

modeling framework.

Pump

Cold Plate

Heat Exchanger

Liquid

Reservoir

Liquid-to-Liquid

Heat Exchanger

Source

Sink

 14

To capture the energy storage and transport in the system each component can be

modeled as a graph where the states ix represent temperatures and the power flows jP represent

the flow of energy. Fig. 2.3 shows the graphs used to capture the energy dynamics of each

component. The temperature T of the fluid in the reservoir is modeled with a single vertex. The

fluid entering the reservoir adds energy at the rate 1 1
in

pP m c T where 1T is the temperature of

the incoming fluid. The fluid exiting the reservoir removes energy at the rate 2
out

pP m c T .

From a conservation perspective, the pump graph is identical to the reservoir graph. Only the

capacitance C associated with the vertices would be different. An additional source vertex and

edge could be added to the pump graph to represent the heat added to the fluid due to

inefficiencies of the pump. The cold plate heat exchanger is represented with 2 vertices

representing the fluid temperature T and the cold plate wall temperature wT . Energy enters the

cold plate in the form of the heat load 2
inP Q and the inlet fluid flow 1 1 1

in
pP m c T . Energy

exits the cold plate with the outlet fluid flow 2
out

pP m c T . Energy is transferred between the

two vertices of the cold plate through convection between the wall and the fluid

 .s wP hA T T The liquid-to-liquid heat exchanger is modeled similarly to the cold plate but

with two liquids, a and b , that exchange energy through the heat exchanger wall.

Figure 2.3 Component graphs for each component in the example system.

Liquid-to-Liquid

Heat Exchanger

Cold Plate

Heat Exchanger

PumpReservoir

T1 T
 1cpT1 2cpT

T1 T
 1cpT1 2cpT

T1

 1cpT1 2cpT

Q

T

Tw

hAs(Tw-T)

 1,acpT1,a 2,acpTa

 1,bcpT1,b 2,bcpTb

hbAs,b(Tb-Tw)

haAs,a(Tw-Ta)

T1,b Tb

Ta

Tw

T1,a

 15

Each solid lined vertex in Fig. 2.3 follows the conservation law from (2.1) and has a

corresponding state ix and capacitance iC . The dashed line vertices represent sources and sinks

of power flow that correspond to the vertices of neighboring components in the system or

external disturbances such as the surrounding environment. Each solid lined edge in Fig. 2.3

follows the generic power flow equation from (2.2) that relates variables such as liquid

properties, temperature, and mass flow rate to power flow.

With the vertex and edge parameters defined for each individual component graph model,

the entire system graph can be formulated based on the structure of component interconnections.

Fig. 2.4 shows the system graph for the example system from Fig. 2.2. This system has 7 states,

7vN , 8 edges, 8eN , two source power flows, 2sN , and 1 sink power flow 1tN . The

ability to define the parameters for each vertex and edge individually, create component graphs,

and combine component graphs to make system graphs provides the desired modularity and

scalability. Further demonstration of this modeling approach is presented for an experimental

thermal fluid system in Chapters 6.

Figure 2.4 Example system graph.

Note that a similar graph could be constructed to capture the mass conservation and fluid

flow dynamics of the system. Chapters 6 demonstrates the relationship between the energy and

mass conservation graphs when modeling and controlling a thermal fluid system.

2.5.2 Energy Domain Agnostic

A vertex represents the storage of energy regardless of whether it is thermal energy stored

in the fuel of a fuel tank, electrical energy stored in a battery, mechanical energy stored in the

Liquid-to-Liquid

Heat Exchanger
Cold Plate

Heat Exchanger

Pump

Reservoir

Q

Tw,c Tcp

Tr

Tp

Ta Tw,l Tb

Ts

 16

rotation of an engine, or pneumatic energy stored in a piston cylinder. An edge represents a path

for energy to flow between capacitive elements. Only the equation used to capture the

relationships between this power flow and the neighboring states and associated actuator input

depend on the energy domain. This power flow equation can be made general enough to closely

capture these relationships for multiple energy domains with a single relationship.

The thermal fluid system from Section 2.5.1 provided an introduction to modeling a

system as a graph. For a thermal system where the state x represents a temperature T , the

capacitance C corresponds to the total thermal capacitance of the component, pC Vc where

the component has density , volume V , and specific heat pc . For thermal systems, power

flow generally takes one of two forms. Power flow due to advection, the transport of fluid, has

the form pP mc T where m is the fluid flow rate. Power flow due to convection has the from

 tail headP hA T T where h is the average heat transfer coefficient over area A and
tailT

and
headT are the temperatures of the tail and head vertices for that edge.

With the general form for power flow from (2.2), a large variety of power flow

relationships of various energy domains can be captured within the graph-based modeling

framework. While this dissertation primarily focuses on the development and analysis of

hierarchical control for arbitrary graphs and the application to thermal fluid systems, ongoing

and future work is extending this modeling approach to include electrical, pneumatic, hydraulic,

and mechanical energy domains.

2.5.3 Timescale Agnostic

Each vertex iv has an associated capacitance iC which relates how the net power flow

into a vertex affects the rate of change for the associated state ix of that vertex. A large

capacitance represents a dynamic with a slow timescale while a small capacitance represents a

dynamic with a fast timescale. Thus a single graph can have vertices with capacitances of highly

varying magnitude but these magnitudes do not affect the modeling approach or edge power flow

equations. When determining timescales based on the magnitude of the capacitance, it is

 17

important to consider the units and magnitude of the associated state, especially when including

multiple energy domains in a single graph.

2.5.4 Variable Fidelity

A graph-based approach is a specific type of a lumped parameter approach where a single

vertex, and associated state, is used to represent time-varying aspects of a component that might

also vary spatially. For example, a single vertex could be used to represent the energy stored, and

the corresponding temperature, of the walls of a heat exchanger. While in reality, the temperature

of the walls can vary significantly by location between the inlet and outlet of the heat exchanger,

a single representative temperature can often be used to capture the heat transfer dynamics for

the heat exchanger. However, if additional model accuracy is required, additional vertices, and

thus states, can be added to the graph model of the component. For example, the cold plate heat

exchanger graph model from Fig. 2.3 represents the fluid temperature in the heat exchanger as a

single vertex with a single temperature. However, in reality, the fluid is continuously changing

temperature as it flows through the heat exchanger. Fig. 2.5 shows how additional vertices could

be added to the heat exchanger graph model to increase the fidelity of the model.

Figure 2.5 Two graph models for a cold plate heat exchanger, where the fluid temperature

is either represents as a single lumped temperature T or three distinct temperatures

, ,a b cT T T along the length of the heat exchanger.

Additionally, a graph-based approach can achieve variable fidelity based on the form of

the power flow equation for each edge. At the most general, this power flow is nonlinear.

However, to be more amenable to analysis and controller development, bilinear and linear

approximations of this power flow relationship can be used at the cost of model accuracy. For

example the power flow for advection is pP mc T . If m is considered the input u for this

power flow and T is the state of the tail vertex, this power flow relationship is bilinear. If a

T1

Q

T

Tw

1 Fluid Temperature Graph 3 Fluid Temperature Graph

T1

Q
Tw

Ta Tb Tc

 18

linear power flow relationship is desired, the bilinear power flow equation can be linearized

about the nominal mass flow rate 0m and temperature 0T as

 0 0 0 0 0 0

0 0 0 0

,

.

p p p p

p p p

P mc T m c T m c T T c T m m

m c T c T m m c T

 (2.11)

2.6 Chapter Summary

Based on the features of the generic graph-based modeling framework presented in this

Chapter, Chapters 3-6 use specific graph formulations to:

1. establish a generic hierarchical control development procedure,

2. assess the stability of closed-loop graph-based nonlinear power flow systems,

3. formulate and analyze a robustly feasible hierarchical control framework for linear

systems, and

4. demonstrate the generic approach on a realistic thermal fluid system, respectively.

Each Chapter uses different example systems to best illustrate the specific contributions

of each Chapter, demonstrating how this generic graph-based modeling framework can be easily

tailored to specific classes of systems.

 19

Chapter 3

Hierarchical Model Predictive Control

3.1 Conceptual Framework

When a power flow system is decomposed as Fig. 1.2 does for an aircraft system, the

dynamics and resulting control decisions form a natural hierarchy. The overall vehicle is

composed of multiple systems (e.g. electrical, thermal, flight control, etc.) and each system is

composed of multiple subsystems. A thermal management system, for example, may consist of a

fuel system, an air conditioning system for the cockpit/cabin, a vapor compression system,

and/or an air cycle machine. Each of these subsystems, contains multiple components such as

pumps, valves, fans, and heat exchangers. Finally, many components have actuators and sensors

that might have their own dynamics. This forms the five-level hierarchy shown in Fig. 1.2 where

the levels are referred to as the Vehicle, System, Subsystem, Component, and Physical Levels.

From this hierarchical decomposition of a system, the control decisions can be decomposed

similarly, resulting in a hierarchical controller similar to the one shown in Fig. 3.1. While this

structure is fairly generic, a control hierarchy can consist of more or fewer control levels, with

varying numbers of controllers at each level and a single controller at the top. The term hierarchy

refers to the communication structure where controllers only communicate with the controllers

directly above and below them in the hierarchy. Thus controllers at the same level do not

communicate, significantly reducing the total information communication throughout the

hierarchy.

 Starting from the bottom of Fig. 3.1, the power flow system (Plant) has dynamics that

evolve continuously, potentially over a wide range of timescales and energy domains. The

 20

bottom level of the hierarchical controller (Physical Level) determines the appropriate control

signal to send to the system’s actuators to achieve the desired actuation. This desired actuation is

the control decision made by the controller one level higher in the hierarchy (Component Level).

At this level, each controller determines how to best utilize a corresponding component to

achieve the desired performance determined by the subsystem controller one level higher in the

hierarchy (Subsystem Level). The subsystem controllers are responsible for determining how a

subsystem should operate to achieve the overall desired operation of the system. Similarly, the

system controllers are responsible for determining how a system should operate to achieve the

overall desired operation of the vehicle. The Vehicle Level controller uses information about the

performance and efficiency objectives for the overall vehicle and any available information

about know disturbances to coordinate the behaviors of the constitutive systems in achieving

these objectives.

Figure 3.1 Notional 5-level hierarchy with notional controller update rates for an electrical

and thermal system.

Electrical
Control System

Thermal
Control System

Information Flow

Vehicle Level

System Level

Subsystem Level

Component Level

Physical Level

Plant

60 sec

10 sec

1 sec

0.1 sec

0.001 sec

continuous

1C

2,1C 2,2C

3,1C 3,2C 3,3C

4,1C 4,2C 4,3C 4,4C 4,5C
4,6C

5,4C5,3C5,2C5,1C

Inputs/
Outputs

 21

In addition to this functional decomposition based on systems, subsystems, and

components, the hierarchy also provides a temporal decomposition. As notionally indicated in

Fig. 3.1, the update rate of the controllers at each level decreases for higher levels of the

hierarchy. This allows each control level to effectively and efficiently determine state trajectories

for dynamics with a corresponding timescale. Upper-level controllers utilize a slower update rate

to better control slower dynamics in the system while lower-level controllers utilize a faster

update rate to better control the faster dynamics. This matching of controller update rates with

system dynamic timescales can provide significant control performance advantages, as discussed

in the following Section.

3.2 Hierarchical Control Advantages

When compared to a centralized control approach, a hierarchical controller has two

primary advantages relating to the temporal and functional decomposition of the power flow

system. While the dynamics of the system occur over a wide range of timescales, a centralized

MPC controller only has a single time step T and a single number of discrete steps in the

prediction horizon pN . The computational cost of the controller is directly affected by pN and

thus pN is chosen based on the computational resources available. Therefore, T becomes the

primary decision variable when designing a centralized controller for a multi-timescale system.

Assuming pN is fixed, Fig. 3.2 demonstrates the effects of T . Consider a simple

system consisting of a slow dynamic (e.g. the temperature of the fuel in a fuel tank, blue line in

Fig. 3.2) and a fast dynamic (e.g. the temperature of a fuel cooled electrical load, pink line in Fig.

3.2). Assume that a disturbance (red line in Fig. 3.2) affects the system which consists of a large

pulse, which is known ahead of time, along with some small, high-frequency variations which

are unknown. A MPC controller with a large T , and thus a long prediction horizon pN T ,

observes the upcoming large pulse disturbance and can begin to precool the fuel as shown in Fig.

3.2a. This precooling prevents the fuel temperature from reaching its maximum safe temperature

(dashed line in Fig. 3.2). However, since the controller updates slowly, it cannot reject the high-

frequency disturbance that causes the fast dynamic state to deviate significantly from the desired

value, which may be highly undesirable due to the additional thermal fatigue placed on the

 22

electrical components. Alternatively, Fig. 3.2b shows the result of a controller with a small T .

Now the controller is able to reject the high frequency disturbance but since the prediction

horizon is short, the fuel tank is not sufficiently precooled, which results in a constraint violation

due to the large pulse disturbance. A centralized controller with a small T and a very large pN

could potentially provide effective control in the presence of both types of disturbances.

However, the excessive computational cost could render this approach infeasible in many

applications, especially in vehicle systems where all controller computation is performed

onboard using limited computation resources.

Figure 3.2 The effects of T on a centralized controller with regard to large known

disturbances and small high-frequency unknown disturbances compared to a hierarchical

control approach.

A hierarchical control approach, however, uses the multiple levels of control in order to

predict far into the future using large T for the upper-level controllers as well as respond

quickly to unknown disturbances using small T for lower-level controllers. Thus pN can be

relatively small at each level of the hierarchy, reducing overall computational cost. Fig. 3.2c

0

50

100

0

50

100

0 20 40 60 80 100
0

50

100

a)

b)

c)

Central (Large ΔT)

Central (Small ΔT)

Hierarchical

Time [s]

State of slow dynamic

State of fast dynamic

Disturbance

Constraint/Reference

 23

shows how the hierarchical controller is able to combine the fast dynamic regulation

performance of the small T centralized control with the precooling and constraint satisfaction

of the large T centralized controller.

The second primary advantage of a hierarchical controller relates to the functional

partitioning of the system. As with decentralized and distributed controllers, no one controller in

the hierarchy has a model of all the dynamics of the system. A centralized controller, which

utilizes a model of the entire system, can make control decisions based on the known coupling

throughout the system. Lack of knowledge of this coupling is what limits the performance and

forces the iterative or conservative nature of many decentralized and distributed control

approaches [37]. However, the proposed hierarchical control approach has the advantage of

directly accounting for the coupling in the plant. Fig. 3.3 demonstrates how the coupling between

two subsystems A and B is directly addressed in the proposed hierarchical framework. Power

flows from state 1x in subsystem A and enters subsystem B through state 2x . This power flow

may be a function of 1x , 2x , and an actuation input u . Assume the input is determined by the

controller for subsystem A. This power flow creates a coupling between the two subsystems. In

decentralized control, the state 2x in subsystem B would be treated as an unknown disturbance

affecting subsystem A and the power flow would be an unknown disturbance affecting

subsystem B. In the proposed hierarchical control framework, however, the power flow and the

state 2x are decision variables of the system-level controller. The desired value of 2x is sent as a

predicted disturbance to the controller for subsystem A and the desired power flow is sent as a

predicted disturbance to the controller for subsystem B. To ensure consistency, the subsystem A

controller is designed to track the desired power flow using the actuator input u and the

subsystem B controller is designed to track the desired value for 2x using the actuators in

subsystem B (not shown in Fig. 3.3). In this way, the hierarchical control framework, while

decomposing the power flow system into systems and subsystems, is still able to directly

consider the coupling between these systems and subsystems, resulting in significantly improved

control performance compared to a decentralized approach.

 24

Figure 3.3 A system with two interconnected subsystems used to demonstrate the ability of

a hierarchical control framework to directly account for the coupling between systems and

subsystems.

The following Sections summarize the hierarchical control framework and then formalize

the procedure by first decomposing and modeling a system as a graph and then detailing the

hierarchical control framework and MPC controller development.

3.3 Hierarchical Control Development Procedure

The following algorithm summarizes the proposed procedure for modeling and

hierarchical control of a multi-energy domain, multi-timescale power flow system. For notational

simplicity and clarity, and without loss of generality, a three-level control hierarchy is assumed

for a vehicle composed of systems and subsystems with slow, medium and fast dynamics.

Hierarchical Control Development Algorithm

1) Model the power flow system dynamics as a graph based on the procedure introduced in

Chapter 2.

2) Partition the graph into systems and subsystems and slow, medium, and fast dynamics.

3) Construct new graphs to capture timescale relevant dynamics at the subsystem, system,

and vehicle level.

4) Identify necessary information communication throughout the hierarchy.

5) Formulate the individual MPC controllers at each level.

The details of each step in this process are presented in Sections 3.4-3.7 and applied for a

numerical example in Section 3.8.

System

Subsystem A Subsystem B

x1 x2

u

 25

3.4 Graph-based System Model

Following the generic graph-based modeling framework presented in Chapter 2, the

following specific formulation is used for this Chapter. A bilinear power flow relationship is

assumed where

 , ,tail head
j j j j j j j j jP u a b x c x d e E (3.1)

where , , ,j j j ja b c d are parameters for each edge of the system. Each input ju and each dynamic

state ix has upper and lower bounds of the form j j ju u u and i i ix x x . Bilinear power

flow relationships are often found in power flow systems [38], [39], such as thermal systems

where heat flow 1 2Q m T T is proportional to a mass flow rate m and a temperature

difference between a source temperature 1T and a sink temperature 2T . The power flow for the

entire system is represented as the vector

 ,
T
b c t

x
P u a M d

x

 (3.2)

where ju u , ja a , and jd d for je E ,
Nvx are the states,

Nt tx are the

sink values, and

, ,
N N Nv t e

b c i jM m
 is a weighted incidence matrix where

 ,

if is the tail of

if is the head of .

0 else

j i j

i j j i j

b v e

m c v e

 (3.3)

Due to the bilinearity in (3.2), the system dynamics cannot be represented as a linear state

space equation. However, to keep the control optimization problem formulated in Section 3.7

linear, a convex relaxation can be used where the vector P serves as the decision variable,

reducing the system to a system of integrators represented by (2.9), rewritten here as

 .inCx MP DP (3.4)

 In the control formulation, (3.2) is incorporated as the set of linear constraints

 26

 , , ,T T
b c b ct t

x x
u a M d P u a M d

x x

 (3.5)

where ,i iu u u u for je E , which ensures that the power flows determined by the

controller can be realized with a set of inputs u u u . Thus the bilinear plant dynamics can be

represented as integrator dynamics with linear constraints used by the controller, and the

nonlinearity is captured by calculating the inputs to the system as

1

, .tail head
j j j j j j j j ju P b x c x d a e E

 (3.6)

This plant representation is used to develop the centralized MPC controller used for comparison

purposes in Section 3.8. To develop the hierarchical control framework, this centralized plant

model must be partitioned to develop graphs used by each controller in the hierarchy.

3.5 System Decomposition

In order to develop a hierarchical controller, the power flow system, represented as an

oriented graph , using the framework presented in Chapter 2, must be decomposed temporally

and functionally. To demonstrate this decomposition, the example system shown in Fig. 3.4 is

used throughout the remainder of this Chapter. The graph for this system has 12vN vertices,

18eN edges, 2sN source power flows, and 2tN sinks. Based on the capacitances of the

vertices, vertices with slow, medium, and fast dynamics are indicated by different colors. The

overall vehicle system is decomposed into 2 systems, each containing 2 subsystems. Based on

the three timescales and the number of systems and subsystems, the corresponding three-level

hierarchical controller is shown in Fig. 3.5.

In general, temporal partitioning is based on the timescale separation of the dynamics in

the plant, represented by the magnitude of the vertex capacitances iC , 1, vi N , as discussed in

Section 2.4. For the three timescale example in this Chapter, it is convenient to refer to the

dynamics as fast, medium, or slow. Note that when determining this temporal decomposition, it

may be necessary to normalize the capacitances based on the magnitude of the corresponding

state, especially when multiple energy domains are modeled. For example, the capacitance

 27

Figure 3.4 Example system graph used to demonstrate the hierarchical control

development and performance.

Figure 3.5 Example three-level hierarchy, and corresponding information flow, with a

single vehicle-level controller, two system-level controllers, and four subsystem-level

controllers.

1 7

3

2

8

9

4

6

5

10

11

12

1

2 3

4

5

6 7

8
10

11

12

17

13

9

14

15

16
18

Vehicle

Sys 1 Sys 2

Sub 1

Sub 2

Sub 3

Sub 4

Source/Sink

Fast Dynamics

Medium Dynamics

Slow Dynamics

P1
in

P2
in

x1
t

x2
t

Sub 1 Sub 2 Sub 3 Sub 4

Sys 1 Sys 2

Veh

Plant

State Measurements

Disturbances

Information Communication

Actuator Inputs

 28

representing the inertia of an engine with the state corresponding to the angular velocity should

be normalized when compared to the capacitance representing the thermal capacitance of a heat

exchanger with the state corresponding to average temperature since the engine speed might

change by thousands of RPM compared to heat exchanger temperature which might only change

tens of degrees.

The plant must also be partitioned spatially. Often this spatial partitioning is intuitive and

can be derived from functionality, physical location, or energy domain. However, for plants

where the partitioning is unclear, [40] presents several algorithms for optimal partitioning of

systems for decentralized and distributed control. In general, for a control hierarchy with N

levels, the thi level of the hierarchy has in controllers where 1 1n and 1i in n . As discussed

in Section 8.2, future work should establish graph-based temporal and spatial partitioning

procedures specifically for hierarchical control where partitioning optimizes the tradeoff between

control performance and computational cost. System partitioning in this dissertation is performed

manually to demonstrate hierarchical controller development and is not optimized to maximize

performance.

For the 3N level example system from Fig. 3.4, the system is decomposed into the

3 4Nn n subsystems
sub
iG shown in Fig. 3.6. For these individual subsystem graphs, light

gray vertices represent virtual sources and sinks where power flow is exchanged with a

neighboring subsystem. Thus
sub
iG includes all edges of G which are incident to the dynamic

vertices of the subsystem, but no more.

These subsystem graphs are used to create the models for the MPC controllers at the

bottom level of the hierarchy in Fig. 3.5, following the procedure outlined in Section 3.7. The

controllers at the upper levels of the hierarchy use a reduced system model, as discussed in the

following Section, to minimize computational cost and improve the scalability of the control

approach.

 29

Figure 3.6 Individual subsystem graph representations for the example system.

3.6 Graph-based Model Reduction

For graph-based model reduction, the general idea is to use the in subsystem reduced

graphs at the thi level to generate the reduced graphs at the 1i level. However, the thN level

controllers do not use a reduced model as discussed in the previous Section, and thus this model

reduction is only performed for levels 1N through 1.

Let the thj subsystem at the 1i level be an aggregation of neighboring subsystems at

the thi level. For the example from Fig. 3.4, the graph for system 1, 1
sys

G , is derived from

reduced graphs for subsystems 1 and 2, while the graph for system 2, 2
sys

G , is derived from

reduced graphs for subsystems 3 and 4. For each subsystem, the graph condensation is a two-step

process where 1) the fast dynamic vertices are converted into algebraic vertices and 2)

neighboring algebraic vertices are combined into a single vertex. Algebraic vertices iv have no

capacitance and thus must satisfy

 0 .j k
in oute E e Ej ki i

P P

 (3.7)

Once condensed, the reduced graphs for subsystems 1 and 2 and the reduced graphs for

subsystems 3 and 4 are combined to create the graphs for system 1 and 2, 1
sys

G and 2
sys

G ,

1 x7

3

2

x5

1

2 3

4

8

Sub 1

4

6

5

x11

5

6 7 9

Sub 2

7

x1
t

8

9

10

11

12

17

Sub 3

x7

10

11

12 x2
t

13

14

15

16
18

Sub 4

Source/Sink

Virtual Source/Sink

Fast Dynamics

Medium Dynamics

Slow Dynamics

P2
in

P1
in

P4

P8

P13

P9

1
sub

2
sub

3
sub

4
sub

 30

respectively. It is important to note that if there are adjacent algebraic vertices in the resulting

system graph, these vertices should not be combined, since the power flow between these

vertices is critical to the coordination of the constitutive subsystems. As a result of this

condensation, the system graphs only include vertices with slow and medium dynamics, as well

as algebraic vertices.

Fig. 3.7 shows the resulting system graphs 1
sys

G and 2
sys

G . The two fast dynamic vertices

of 1
subG are converted into algebraic vertices (represented as white vertices) and condensed since

2v and 3v are neighbors through 3e . The fast dynamic vertex 5v in 2
subG is also converted to an

algebraic vertex. The resulting subsystem graphs were combined to produce 1
sys

G . As mentioned

previously, the algebraic vertex 2,3v is not combined with algebraic vertex 5v since the

controller for system 1 must determine the desired power flow along 4e in order to address the

coupling between subsystems 1 and 2 based on the previous discussion using Fig. 3.3. The same

procedure is followed to generate 2
sys

G , where 7v and 12v are converted to algebraic vertices;

however, no vertices are combined since there were no neighboring fast dynamic vertices in

either subsystem 3 or 4.

Figure 3.7 System graph representations for the example system.

This procedure of condensing is repeated to develop the vehicle graph vehG from the 2

system graphs
sys
iG . Now the medium dynamic vertices are converted into algebraic vertices and

neighboring algebraic vertices are combined into a single vertex. Once condensed, the 2 system

1 x7

2,3

4

6

5

x11

2

4

5

6 7

8

9

Sys 1

7

x1
t

8

9

10

11

12 x2
t

10

11

12

17

15

14

15

16
18

Sys 2

1

Source/Sink

Virtual Source/Sink

Algebraic

Medium Dynamics

Slow Dynamics

P1
in

P2
in

P8

P9

2
sys

1
sys

 31

graphs are combined to create the vehicle graph. The vehicle graph only includes vertices with

slow dynamics and algebraic vertices.

Fig. 3.8 shows the resulting graph vehG . The medium dynamic vertices of 1
sys

G and 2
sys

G

were converted to algebraic vertices and combined with neighboring algebraic vertices. Based on

the structure of 1
sys

G and 2
sys

G all algebraic vertices were combined into a single algebraic vertex

for each system. The two condensed system graphs were combined resulting in two algebraic

vertices and the two slow dynamic vertices 6v and 8v . Once again, the two algebraic vertices are

not combined because the vehicle-level controller must determine the desired power flow along

8e and 9e to address the coupling between systems 1 and 2.

Figure 3.8 Vehicle graph representation for the example system.

The sets and parameters identified for the entire system in Chapter 2 can be defined for

each graph vehG ,
sys
iG , and

sub
iG , where a superscript is used to denote the set or parameters for

a particular graph (e.g. zx is used to denote the vector of dynamic states for graph zG in the

controller development below, where for the example system { ,z veh 1,sys 2 ,sys 1,sub 2 ,sub

3,sub 4}sub).

x1
t

6

x2
t6 7

9

17

18

Vehicle

1,2,3

4,5

8

7,9,10

11,12

10 12

8

Source/Sink Algebraic Slow Dynamics

P1
in

P2
in

veh

 32

3.7 Controller Development

Fig. 3.5 shows the three-level hierarchical control architecture used to control the

example system from Fig. 3.4. In general, the vehicle-level receives preview information for

upcoming disturbances. For the example system this refers to the predicted values for 1
inP , 2

inP ,

1
tx , and 2

tx . The vehicle-level controller then uses the dynamic representation of the system

derived from vehG to determine the desired states for the slow dynamic vertices. For the

example system this corresponds to 6x and 8x . The vehicle-level also determines the desired

power flows for any edge that connects two systems as well as the desired states for the tail and

head vertices for these edges. For the example system, these are the power flows along 8e and

9e along with 2x , 7x , 5x , and 11x . The system-level controllers attempt to track these desired

values. If a desired power flow is exiting the system, the system controller tries to track the

desired power flow using knowledge of the desired value of the head vertex state sent from the

vehicle-level controller. If a desired power flow is entering the system, this power flow is treated

as a known disturbance to the system and the system controller tries to achieve the desired head

vertex states sent from the vehicle-level controller. For the example system, the system 1

controller tries to achieve the desired power flows along 8e and 9e using knowledge of the

desired values 7x and 11x . The system 2 controller tries to achieve the desired values for 7x and

11x using knowledge of the desired power flow along 8e and 9e . This approach helps to ensure

consistency among the actions of the system-level controllers. The system-level also determines

the desired values for the medium dynamic states, the desired power flow along edges

connecting subsystems, and the tail and head vertex states for these edges. This process

continues for the subsystem-level controllers.

With the information communication architecture and desired control behavior defined,

MPC controllers are used at each level of the hierarchy to achieve this coordination between

systems and subsystems. One of the key features of the proposed hierarchical controller in this

Chapter is that each MPC controller in the hierarchy has the same general form. This

significantly simplifies the control design procedure and allows the hierarchical approach to be

 33

readily scaled to larger systems with more levels of control. Controller z solves the constrained

quadratic program

1 6

0 1

0

min

. . 0 1,5 , 1, 1 ,

0 1,4 , 1, 1 ,

0 ,

N p

i i
z

k i

i p

i p

z z

J k

s t g k i k N

h k i k N

x x

P

 (3.8)

where

2 2

1 2
2 2

2 2

3 4
2 2

2 2

5 6
2 2

, ,

, ,

1 , ,

z z z
des

z z z z
track track

z z z

J k x k x k J k P k

J k x k x k J k P k P k

J k P k P k J k s k

 (3.9)

and

1 , ,

2 , ,

3 4

5

,
1

,
2 3

,

,

, ,

,

1 ,

z
T

z z z z z
b c t z

z
T

z z z z z
b c t z

z z z z z z

z

z z z z z z z z in z

z z in z
preview

x k
g k u a M d P k

x k

x k
g k P k u a M d

x k

g k x x k s k g k x k x s k

g k s k

h k C x k x k t M P k t D P k

h k F P k h k P k P

,

, ,
4

,

.

in z

t z t z
preview

k

h k x k x k

 (3.10)

The lifted vector z zP k

P contains the decision variables corresponding to the power

flows along the edges of the graph at every time step k over the prediction horizon pN . The

objective function includes six cost terms each defined at every time step of the prediction

 34

horizon as well as five inequality constraints and four equality constraints. The initial state vector

 0zx equals the measured state of the system 0
zx . The six terms of the cost function, weighted

by i , penalize

1) tracking of desired stated values,

2) power flow along edges,

3) tracking of desired state values sent from the controller directly above in the hierarchy,

4) tracking of desired power flows also sent from the controller directly above in the

hierarchy,

5) changes in power flows in time, and

6) the slack variables used to ensure feasibility of the optimization problem when state

constraint violation is unavoidable.

The five inequality constraints bound

1) the power flows from below based on the minimum achievable inputs,

2) the power flows from above based on the maximum achievable inputs,

3) the states from below,

4) the states from above, and

5) the slack variables to be positive.

Finally, the two equality constraints provide

1) the discretized system dynamics with a time step of zt based on the corresponding

graph for the particular controller,

2) the algebraic relationships between power flows in the system,

3) preview for the source disturbances provided by the controller directly above in the

hierarchy, and

4) preview of the sink disturbances also provided by the controller directly above in the

hierarchy.

While each controller has the same generic form, the exact controller formulation

depends on the level of the controller in the hierarchy. Since there is no controller above the

vehicle-level, the vehicle-level controller does not have 3J or 4J and does not receive the

disturbance preview information in 3h and 4h from a controller. If preview information is

 35

available, this information must be provided directly to the vehicle-level controller as shown in

Fig. 3.5. In addition to the MPC controller, the controllers at the lowest level in the hierarchy, the

subsystem controllers in this Chapter, must also calculate the control inputs to be sent directly to

the system. Eq. (3.6) is used to calculate the input signals based on the desired power flows at the

first time step 1zP and the measured states 0
zx .

3.8 Numerical Example

The following simulation results compare the control performance achieved by

centralized, decentralized, and hierarchical control approaches. The example system from Fig.

3.4 is used with the parameters listed at the end of the Chapter. All controllers have a prediction

horizon of 20pN steps. The centralized controller is evaluated using three different update

rates of 1t , 10, and 100 seconds corresponding to the update rates of the subsystem, system,

and vehicle-level controllers in the hierarchical controller, 1subt , 10syst , and

100,veht respectively. The decentralized controller has an update rate of 1t second and

consists of the four subsystem-level controllers at the lowest level of the hierarchy without the

system- and vehicle-level controllers. For brevity, the following figures only show the

centralized control performance corresponding to an update rate of 10 seconds. Also, for clarity,

only some of the vertex state trajectories are highlighted in Figs. 3.9 and 3.11 as indicated in the

legends.

First, the convergence properties of each control approach are evaluated. Fig. 3.9 shows

the convergence performance of the centralized, decentralized, and hierarchical controllers where

each vertex in the example system from Fig. 3.4 has an initial state of either 25 or 75 and all

states are to be regulated at 50. As expected, the centralized controller, Fig. 3.9a, provides the

fastest convergence utilizing complete knowledge of the coupling in the plant. The convergence

results for the centralized controllers with update rates of 1 and 100 seconds are very similar to

that shown in Fig. 3.9a. The decentralized controller, with no knowledge of the coupling between

subsystems, converges much more slowly as shown in Fig. 3.9b. The hierarchical controller, Fig.

3.9c, while not as effective as the centralized approach, performs significantly better than the

decentralized controller, demonstrating how the system and vehicle-level controllers effectively

 36

coordinate the actions of the subsystems. The spikes in 5x and 7x (cyan and black lines in Fig.

3.9c) are due to an update in the desired power flow determined by the vehicle-level controller.

These states are affected most significantly because they are in the set of fast dynamic vertices

and are directly affected by the power flow out of other subsystems.

Figure 3.9 Convergence results for centralized, decentralized, and hierarchical controllers.

Next, the controller performance is evaluated for a scenario with time-varying source and

sink disturbances. Fig. 3.10 shows the disturbance profiles for 1
inP , 2

inP , 1
tx , and 2

tx . Based on

the power flow relationship for 17e , the change in 1
tx results in a change in the maximum power

flow to this sink from 50W to 75W. This disturbance is followed by an increase in inlet power

1
inP from 50W to 75W. The inlet power flow 2

inP and the sink state 2
tx are constant at 50. These

disturbances are previewed by the centralized controller and the vehicle-level controller of the

hierarchy. Each source and sink also has small unmeasured high-frequency deviations that are

not included in the preview information. Fig. 3.11 shows the control results for the three different

0 100 200 300 400 500
20

40

60

80

0 100 200 300 400 500
20

40

60

80

0 100 200 300 400 500
20

40

60

80

a)

b)

c)

Central (Δt = 10s)

Decentral (Δt = 1s)

Hierarchical (Δt = 1,10,100s)

Time [s]

x1

x5

all other x

x6

x7

x8

x12

 37

Figure 3.10 Disturbance profiles.

Figure 3.11 Disturbance rejection results for centralized, decentralized, and hierarchical

controllers.

control approaches. Starting with the hierarchical control approach in Fig. 3.11c, the controller

uses the long prediction horizon of the vehicle-level controller to “precool” the slow dynamic

states (6x and 8x) from 100 to 300 seconds (shown by the blue and green lines, green is covered

by blue). When the large power load enters the system from 400 to 600 seconds, these states

0 200 400 600 800 1000
40

50

60

70

80

P1
in

P2
in

x1
t

x2
t

Time [s]

0 200 400 600 800 1000

40

60

80

100

0 200 400 600 800 1000

40

60

80

100

0 200 400 600 800 1000

40

60

80

100

a)

b)

c)

Central (Δt = 10s)

Decentral (Δt = 1s)

Hierarchical (Δt = 1,10,100s)

Time [s]

x1

x5

all other x

x6

x7

x8

x12

 38

increase and settle near the desired value of 50. Also, note that 12x (red line) is well regulated to

the desired value of 50. The centralized controller with an update rate of 10t , Fig. 3.11a,

does not have as long of a prediction horizon as the vehicle-level controller and thus does not

effectively use the extra sink capacity during 100 to 300 seconds resulting in minimal precooling

of 6x and 8x . The large power load then causes these states to rise well above the desired value

of 50. Additionally, since the centralized controller has a larger update rate than the subsystem-

level controllers, the centralized controller is not able to reject the unmeasured disturbances as

effectively, resulting in the large variations in 12x (red line in Fig. 3.11a). Finally, as shown in

Fig. 3.11b, the decentralized controller, while able to reject the unmeasured disturbances due to

its fast update rate, is unable to precool 6x and 8x and is also unable to regulate 1x , 5x , and 7x

(the magenta, cyan, and black lines in Fig. 3.11b) due to its lack of disturbance preview and

subsystem coupling knowledge. The relative tracking performance for each controller is

compared in Fig. 3.12, where the height of each bar ih is calculated as

1000

2

2
0

50 ,i

k

h x k

 (3.11)

and then normalized compared to the hierarchical control approach. Thus a height of zero on this

plot corresponds to perfect tracking. In Fig. 3.12, each bar is subdivided corresponding to the

tracking error for 6x and 8x (blue area), 12x (green area), and the states of the remaining

vertices (red area). In general, the centralized controllers perform significantly better than the

decentralized approach but have about twice the tracking error as the hierarchical approach. The

majority of the tracking error for the centralized controller with an update rate of 1t second

comes from the inability to precool 6x and 8x (blue area), while the majority of the tracking

error for the centralized controller with an update rate of 100t seconds comes from the

inability to regulate 12x due to the unmeasured high-frequency disturbances (green area). The

majority of the tracking error for the hierarchical control approach comes from the strategic

precooling of 6x and 8x . Due to the actuator constraints of the system and the magnitude of the

disturbances, zero tracking error is infeasible for this scenario. Thus the hierarchical controller

 39

determines the appropriate precooling to minimize the total tracking error before and after the

large power load.

Figure 3.12 Comparison of reference tracking error for centralized, decentralized, and

hierarchical controllers.

The hierarchical controller achieves this performance increase in a computationally

efficient way. Fig. 3.13 shows the time required to solve the optimization problem at each time

step throughout the simulation for the centralized controller with 10t and each of the

individual controllers within the hierarchical controller. The MPC optimization problems are

formulated using the YALMIP Toolbox [41] and solved using the Gurobi optimization suite [42]

run on a desktop computer with a 3.10 GHz Intel Xeon E31225 processor and 8 GB of RAM. By

decomposing the control decisions for the system among coordinated controllers, the hierarchy

reduces the computational cost of each controller by about 50% of the centralized controller.

However, since there are more individual controllers in the hierarchy, the overall computational

cost is higher. This would not necessarily be true for a larger system with more states and

decision variables. Additionally, the hierarchical controller can take advantage of parallel

processing while the centralized controller cannot. Future work should investigate how the

increase in computational cost of hierarchical controllers compares that that of centralized

controllers.

Central - 1 Central - 10Central - 100 Decentral Hierarchical
0

100

200

300

400

500

1100

1150

1200

Central - 1 Central - 10Central - 100 Decentral Hierarchical
0

100

200

300

400

500

1100

1150

1200

Central Decentral Hier

R
el

at
iv

e
T

ra
ck

in
g
 C

o
st

x6,8

x12

all other x
Δt =1s

Δt =10s
Δt =100s

 40

Figure 3.13 Comparison of controller computation times for the centralized controller with

10t and the hierarchical controllers.

3.9 Chapter Summary

A hierarchical control approach is well suited for controlling the complex multi-timescale

power flow systems in vehicles. Vehicle-wide control performance is achieved through

coordination among systems and subsystems at each timescale. This Chapter presented a generic

hierarchical control development procedure and demonstrated the efficacy of the approach on a

simulated example system. The following two Chapters further the development of hierarchical

control by analyzing the theoretical properties of stability and robust feasibility.

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

C
o

m
p

u
ta

ti
o

n
 T

im
e

[s
]

Time [s]

Cent
Veh
Sys1
Sys2

Sub1
Sub2
Sub3
Sub4

 41

Example System Parameters

The following table contains the parameters for the example system in Fig. 3.4.

xi Ci ei ai bi ci di 𝑢𝑖 𝑢𝑖

1 0 1 1 1 0 0 0 0

2 10 2 0 0 0 1 0 50

3 1 3 0 0 0 1 0 50

4 1 4 0 0 0 1 0 50

5 0 5 0 0 0 1 0 50

6 10 6 1 1 0 0 0 0

7 1 7 0 0 0 1 0 50

8 100 8 0 0 0 1 0 50

9 1 9 0 0 0 1 0 50

10 100 10 0 0 0 1 0 100

11 10 11 0 0 0 1 0 50

12 0 12 0 0 0 1 0 50

13 10 13 0 0 0 1 0 50

14 10 14 0 0 1 0 0 1

15 1 15 0 0 0 1 0 50

16 0 16 0 0 0 1 0 100

 17 0 0 0 1 0 50

 18 0 0 0 1 0 50

 19 0 0 0 1 0 50

 20 0 0 1 0 0 1

 0, 100 1,16i ix x i

 42

Chapter 4

Passivity-based Stability

4.1 Motivation

For energy management onboard vehicle systems, controllers are tasks with maximizing

performance through optimizing the generation, storage, distribution, and utilization of energy.

As these controllers are designed more aggressively, guaranteeing stability of the closed-loop

system becomes vital to safe and reliable operation. However, assessing closed-loop stability of a

control hierarchy remains difficult due to the complex structure of interaction among individual

controllers in the hierarchy. Despite the performance advantages of MPC, the general lack of

closed-form control solution compounds this difficulty. Through analysis of the specific structure

of graph-based power flow systems, this Chapter provides a formulation for augmenting each

MPC controller at the lowest level of a hierarchical controller, using a local passivity constraint,

which guarantees closed-loop stability for the overall system.

4.2 Background

When modeling power flow systems as a graph, the governing energy conservation laws

suggest an inherent feature of these systems: passivity. The notion of passivity in system

modeling and control originated from the physical principles of energy conservation and

dissipation in electrical and mechanical systems [43] and has become a widely used and highly

general methodology in nonlinear system analysis and control [44]–[46]. Thus, passivity-based

control has been applied to a variety of power flow systems in centralized [30], [47], [48] and

decentralized control architectures [49].

 43

Due to the numerous benefits of MPC, many centralized, passivity-based MPC

formulations have been developed in the literature [50]–[54]. However, due to the complexity of

many systems, including power flow systems, a centralized control approach may be

computationally impractical and may not provide sufficient robustness to faults in the system.

Thus, several distributed passivity-based MPC formulations have also been established [18],

[55]. In these approaches, along with the system analysis in [56], [57], stability is assessed with a

global, system-wide matrix condition that accounts for the subsystem interconnection topology

and the gain of the coupling between subsystems. While this may be practical for some systems,

the need to analyze global properties of the system is limiting and, as will be shown, unnecessary

for guaranteeing closed-loop stability of graph-based power flow systems.

The aim of this Chapter is to present a purely decentralized and easily implementable

method for augmenting existing decentralized and hierarchical control frameworks that

guarantees stability of the overall closed-loop system. The relative simplicity of the approach is

enabled by exploiting the structure of power flow systems represented as graphs. The proposed

approach identifies a set of inputs and outputs that render each subsystem passive. Neighboring

subsystems form a negative feedback connection, establishing passivity of the overall system.

While the approach relies on a graph-based representation of the system, a nonlinear, affine in

control, power flow representation provides applicability to a wide class of systems. Actuator

input and state constraints are considered, with slack variables on the state constraints to avoid

infeasibility issues. Through the addition of a nonlinear constraint to each controller, the

proposed approach provides simple implementation and reduced conservatism compared to

standard passivity-based approaches.

4.3 Nonlinear Graph System Model

Following the general graph-modeling framework from Chapter 2, consider a power flow

system composed of subN interconnected subsystems , 1,i subi NS . Each subsystem is

represented by an oriented graph ,i i i= V E of order ,v iN with set of vertices

 , ,, 1,i i k v iV v k N and of size ,e iN with set of edges , ,, 1,i i j e iE e j N . Each

oriented edge ,i j ie E represents a path for power flow in iS , where positive power ,i jP flows

 44

from the tail vertex ,
tail
i jv to the head vertex ,

head
i jv . Each vertex ,i k iv V has an associated state

,i kx that represents the amount of energy stored in that vertex. Thus the dynamic for the state of

each ,i kv satisfies the energy conservation equation

 , , , ,

, ,, ,

,i k i k i j i j
in oute E e Ei j i ji k i k

C x P P

 (4.1)

where , 0i kC is the energy storage capacitance of vertex ,i kv and , , , ,|in head
i k i j i j i kE e v v and

 , , , ,|out tail
i k i j i j i kE e v v are the sets of edges oriented into and out of the vertex ,i kv .

Assumption 4.1

The power flow ,i jP along edge ,i je is defined as

 , , , , , , , ,, , ,tail head tail head
i j i j i j i j i j i j i j i jP f x x g x x u (4.2)

where ,
tail
i jx and ,

head
i jx are the states of the tail and head vertices ,

tail
i jv and ,

head
i jv , ,i ju is an

associated actuator input, and , ,, :i j i jf g . Additionally, ,i jf is Lipschitz, twice

continuously differentiable, and , 0,0 0i jf while ,i jg is continuous, , 0,0 0i jg , and the

intersection of the zero sets of ,i jg is the origin , , ,, 0 .tail head
i j i j i j

j

g x x

Fig. 4.1 shows a graph of an example subsystem iS used to identify key components. For

this example subsystem, there are three paths for power to enter or exit the subsystem. For the

two dashed edges oriented into the subsystem, the power flow along these edges, denoted ,1
in

iP

and ,2
in

iP , is treated as a disturbance to the subsystem and these edges are not included in i . The

third path is represented by an edge oriented out of the subsystem, labeled ,1
out

iP . Power flow

along this type of edge follows the relationship from (4.2), where now ,
head
i jx is a sink vertex

state ,1
t
ix . These sink states are not states of iS and thus are disturbances to the subsystem,

 45

representing the surrounding environment. Finally, as indicated in Fig. 4.1, each subsystem has a

subset in
ix of the states ix that represent the states directly affected by the inlet power flows in

iP .

Figure 4.1 Notional subsystem exemplifying the graph-based power flow representation

with key power flows and states highlighted in red. Dashed lines indicate elements that

serve as disturbances to the subsystem.

Let ,i i jkM m be the incidence matrix of graph i [36] where

, ,

, , ,

1 if is the tail of

1 if is the head of .

0 else

i j i k

i jk i j i k

v e

m v e

 (4.3)

Then, based on (4.1), the subsystem dynamics are

 ,
0

i i i in
i i it

i

C x D
M P P

x

 (4.4)

where ix are the states of the dynamic vertices,
t
ix are the states of the sink vertices,

 ,i i kC diag C
 is a diagonal matrix of the capacitances of the dynamic vertices, iP are the

power flows along the edges of i ,
in

iP are the source power flows entering iS , and

,i i jkD d
 is a matrix where

iS

,1

in

iP

,2

in

iP

,1

out

iP

,1

in

ix

,2

in

ix

,1ix

,2ix

,3ix

,4ix
,5ix

,1iP

,2iP

,3iP

,4iP

,5iP
,6iP ,1

t

ix

i

 46

, ,

,

1 if is the head of
.

0 else

in
i j i k

i jk

v P
d

 (4.5)

Since
t
ix are disturbances to the system, not states, iM is partitioned as i

i
i

M
M

M

, with

, ,N Nv i e i
iM

 and , ,N Nt i e i

iM

 , resulting in

 .in
i i i i i iC x M P D P (4.6)

From (4.2), the vector of power flows in iS is

 , , ,t t
i i i i i i i iP F x x G x x u (4.7)

where , , ,, ,t tail head
i i i i j i j i jF x x f x x

 and , , ,, ,t tail head

i i i i j i j i jG x x diag g x x

. Thus the

dynamics for iS are

 , , .t t in
i i i i i i i i i i i i iC x M F x x M G x x u D P (4.8)

Assumption 4.2

Each subsystem of the form

0

, ,
0

ii
i i i i i t

i

xC
x M F x x

I x

 (4.9)

admits an equilibrium
*
ix for a set of nominal inputs

*
iu and disturbances

,*in
iP ,

,*t
ix and such

an equilibrium is locally stable in the sense that the Jacobian matrix

*

,
i i i

i
i x xi i

M F x
A

x

 (4.10)

has eigenvalues such that Re 0k iA k .

 47

Remark 4.1

It is assumed that
*
ix ,

*
iu ,

,*in
iP ,

,* 0t
ix . If otherwise, the subsystem states, inputs, and

disturbances can be shifted such that
*
ix ,

*
iu ,

,*in
iP ,

,* 0t
ix . Note that if Re 0k iA for

some k , linearization fails to assess the stability of the system and a center manifold analysis

may be employed [44].

 Remark 4.2

From the notation introduced in [33], if each ,i jf is restricted to be a g-type flow, with

 , , , , , ,,tail head tail head
i j i j i j i j i j i jf x x f x x , or a h-type flow, with , , , , ,,tail head tail

i j i j i j i j i jf x x f x , and

is smooth with positive derivative, stabilizability of the open-loop subsystem can be assessed

based on the external connectivity of i .

The overall power flow system S , with graph , is composed of N interconnected

subsystems iS , 1,i N . Following the same procedure used to define the dynamics of each

subsystem, the overall system dynamics are

 , , ,t t inCx MF x x MG x x u DP (4.11)

where ix x and iu u are the states and inputs of the entire system. The inlet power flows

 1 ,...,in in in
NP P P are the power flows into system S , i.e. power flows that do not come from

neighboring subsystems. These power flows directly affect the states 1 ,...,in in in
Nx x x . The sink

states for the system 1 ,...,t t t
Nx x x are the sink states from the individual subsystems that do

not correspond to states of a neighboring subsystem. The power flows to these sink states are

denoted 1 ,...,out out out
NP P P .

 48

Definition 4.1

A , -pathu v on ,V E is a sequence of edges (regardless of orientation) connecting two

distinct vertices ,u v V , not including any sink vertices as intermediate vertices. A graph is

connected if it has a , -pathu v for each ,u v V .

Assumption 4.3

The graph is connected.

If is not connected, the individual components of are to be analyzed independently.

Remark 4.3

While the dynamics of the overall system are defined in (4.11), one of the key advantages of the

proposed approach is that all assumptions and analysis are local to each subsystem.

Development of the controller and assessing the closed-loop stability does not require analysis

of the entire system. This can be advantageous when the size of the system prevents any type of

centralized design or analysis and when analyzing plug-and-play systems [58], where subsystems

may go on- and offline during operation.

4.4 Main Results

4.4.1 Passivity of Subsystems

Definition 4.2 [44]

The system H with ,x f x u , ,y h x u where : n p nf is locally Lipschitz,

: n p ph is continuous, 0,0 0f , and 0,0 0h is passive if there exists a

continuously differentiable positive semidefinite function V x such that

 , , , .T n pV
u y V f x u x u

x

 (4.12)

If Tu y V for only a neighborhood of the origin, H is locally passive.

 49

Fig. 4.2 shows the interconnection of subsystem iS with “upstream” and “downstream”

subsystems 1iS and 1iS . The set of s
iN power flows into iS from 1iS is denoted

sNin i
iP

and directly affects a corresponding set of states in iS , denoted as
sNin i

ix . The set of t
iN

power flows out of iS into 1iS is denoted
tNout i

iP and directly affects a corresponding set

of states in 1iS , denoted as
tNt i

ix . Note that, for the particular subsystem interactions shown

in Fig. 4.2, 1
out in

i iP P and 1
t t
i ix x . The interconnection between these three subsystems is

shown as a set of negative feedback connections in Fig. 4.3. For subsystem iS , the actuator

inputs and passivity outputs are denoted iu and iy , respectively, where iy is a function of

subsystem states ix and neighboring states t
ix and is strategically chosen below.

Figure 4.2 Notional interconnection between three subsystems demonstrating the key

interactions and relevant variables.

Theorem 4.1

A subsystem iS , represented by (4.8), is locally passive from iu to iy with

 , ,

in in
i i

i i i i

t out
i i

P x

u u y y

x P

 (4.13)

and

 .T
i i i i iy G x M x (4.14)

1iS iS 1iS

in

iP

,2

in

ix

t

ix

out

iP,1

in

ix

 50

Figure 4.3 Block diagram for the subsystems from Fig. 4.2.

Proof.

Consider the storage function
1

2

T
i i i iV x C x . Taking the derivative and using (4.6) yields

 .T T T in
i i i i i i i i i iV x C x x M P x D P (4.15)

Noting that
in T
i i ix D x , (4.15) simplifies to

 .
T

in in T
i i i i i iV x P x M P (4.16)

Adding and subtracting
T

t out
i ix P , with

out
i i iP M P , results in

 .
T T T

in in t out T t
i i i i i i i i i i iV x P x P x M P x M P (4.17)

 Using (4.7) and the definition for iy in (4.14), iV reduces to

,

.

T T
in in t out T T

i i i i i i i i i i i

T T
i i i i i i

V x P x P y u x M F x

y u x M F x

 (4.18)

By Assumption 4.2, there exists 0iA such that

iS

1iS

1iS

1

t

i

in

i

x

x

1

1

i

out

i

y

P

1

1

i

t

i

u

x

1

out

i

in

i

P

P1

t

i

in

i

x

x

iu
iy

1

out

i

in

i

P

P

1

1

in

i

i

x

y

1

1

in

i

i

P

u

 51

 0T T
i i i i i i ix M F x x A x (4.19)

within a neighborhood of the equilibrium. Thus T
i i iV y u within this neighborhood, proving the

theorem.

Establishing the connection between passivity and stability requires the system to be

zero-state detectable (ZSD) [45].

Definition 4.3 [45]

The system H with zero input is ,0x f x , ,0y h x , and
nZ is its largest positively

invariant set contained in | ,0 0nx y h x . The system H is zero-state detectable

(ZSD) if 0x is asymptotically stable conditionally to Z . If 0Z , H is zero-state observable

(ZSO).

Lemma 4.1

The system (4.8) with outputs iy is ZSO.

Proof.

Based on the definition of iM in (4.3), the output vector is ,i i jy y , where

 , , , , , ,, ,tail head tail head
i j i j i j i j i j i jy g x x x x (4.20)

For ZSO, 0iy only if 0ix . Based on Assumption 4.1, there exists j such that

 , , ,, 0tail head
i j i j i jg x x if , ,, 0tail head

i j i jx x . Combined with the fact that , , 0tail head
i j i jx x j only at

the equilibrium
* 0ix , there exists j such that , 0i jy if 0ix , which proves the system is

ZSO, and thus also ZSD.

Remark 4.4

With the thj output for iS defined in (4.20), the passivity outputs reflect the physical structure of

the system. For edge ,i je , the corresponding passivity output ,i jy is a function of the difference

 52

between the tail and head vertex states ,
tail
i jx and ,

head
i jx and the nonlinear gain ,i jg between the

input ,i ju and power flow ,i jP . While physical meaning of this output depends on the particular

power flow system, in general, the passivity output for each edge represents the disparity

between the neighboring vertex states weighted by the corresponding input control authority.

4.4.2 Passivity of the System

With the passivity of each subsystem iS established in Theorem 4.1, the structure of the

interconnections between subsystems, as shown in Figs. 4.2 and 4.3, is used to assess the

passivity of the overall open-loop system.

Theorem 4.2

Given a system S composed of N interacting subsystems iS , if each subsystem is passive from

inputs iu to outputs iy , then the overall open-loop system is passive from the inputs u to the

outputs y with

 , ,

in in

t out

P x

u u y y

x P

 (4.21)

where iu u and iy y are all of the actuator inputs and passivity outputs for the system.

Proof.

The following proves the theorem by induction on the number of subsystems in S . Let NS

denote a system with N subsystems. For the base case, 1N , Theorem 4.1 establishes that a

system comprised of a single subsystem iS is passive from iu to iy . For the induction step, let

 1N S be the union of a system NS with N subsystems and a single subsystem rS , where

 is a subgraph of . By the induction hypothesis, S is passive from u to y and by Theorem

4.1, rS is passive from ru to ry . Since, by Assumption 4.3, is a connected graph, there exists

at least one edge for power to flow between S and rS . As shown in Fig. 4.3, each power flow

 53

between neighboring subsystems forms a negative feedback connection. Therefore, S is a

system formed by the negative feedback of two passive systems and is itself passive.

Example 4.1

To demonstrate the result of Theorem 4.2, and the construction of vectors
inP , inx ,

outP , and

tx , consider the three interconnected subsystems shown in Figs. 4.2 and 4.3. Each subsystem

has a storage function where

 1, , 1 .T
k k kV y u k i i i (4.22)

The storage function for the system is

 1 1,i i iV V V V (4.23)

and

1 1 1 1 1 1

1 1 1 1 1 1 .

T
in in T t out

i i i i i i

T
in in T t out

i i i i i i

T
in in T t out

i i i i i i

V P x u y x P

P x u y x P

P x u y x P

 (4.24)

Noting that 1
out in

i iP P , 1
out in

i iP P , 1
in t
i ix x , and 1

t in
i ix x ,

1 1 1 1 1 1 1 1 ,

,

,

T
in in T T T t out

i i i i i i i i i i

T
in in T t out

T

V P x u y u y u y x P

P x u y x P

u y

 (4.25)

where 1
in in

iP P , 1
in in

ix x , 1
out out

iP P , and 1
t t

ix x .

Remark 4.5

Note that the cascaded structure shown in Figs. 4.2 and 4.3 is used purely for notational

simplicity. The fact that the negative feedback connections, on which the proof of Theorem 4.2 is

 54

based, are formed on a per edge basis allows the stability of a system with any subsystem

interconnection structure to be established from the passivity of each subsystem.

4.4.3 Decentralized Closed-loop Stability

The structured, passivity-preserving coupling between subsystems used to prove passivity

of the open-loop system also allows for the independent design of MPC controllers for each

subsystem. As shown in Fig. 4.4, each controller can be treated as another subsystem iC in

negative feedback with subsystem iS through the inputs iu and passivity outputs iy . Thus,

passivity of the closed-loop system under decentralized control is achieved by enforcing

passivity in each controller individually.

Figure 4.4 Block diagram showing the negative feedback connection between the subsystem

iS and the controller iC . For clarity of presentation, controllers 1iC and 1iC for

subsystems 1iS and 1iS are omitted from the diagram.

Each controller iC solves the following augmented nonlinear MPC optimization problem

0

min , , ,
T

i i i i
ui

x u r s d

 (4.26a)

S i-1

S i

S i+
1

Ci

 –

 –

 –

x
in

i-1

y i-1

P
in

i-1

u i-1

P
out

i-1 P
in

i

u i

y i

x
in

i
-x

t
i-1

-x
t
i

x
in

i+
1

P
out

i

P
in

i+
1

y i+
1

P
out

i+
1

u i+
1

-x
t
i+

1

 55

. t .s ,in
i i i i i iC x M P D P (4.26b)

 , , ,t t
i i i i i i i iP F x x G x x u (4.26c)

 ,00 ,i ix x (4.26d)

 ,T
i i i iy G x M x (4.26e)

 min max ,i i i i ix s x x s (4.26f)

 , 0, ,i iu T (4.26g)

 , , 0, ,T
i i i i iz u y z T (4.26h)

where the stage cost is a positive definite function, ir is a set of references to be tracked,

 is are slack variables to ensure feasibility of the state constraints, and

 min max
, , ,|i i i j i j i ju u u u j with

min max
, ,0i j i ju u . Similar to [50], iz represents the

accumulation of passivity. When 0T
i iu y , the excess passivity is stored by decreasing iz . This

stored passivity can be depleted by allowing the system to operate with a deficiency of passivity

for a finite amount of time, at which point i iz , where i is a predetermined constant, and

the controller is required to enforce passivity once again. This integral form of passivity reduces

the conservatism associated with the more conventional passivity-based MPC found in [52]. The

following theorem shows how this passivity constraint guarantees stability of the closed-loop

system.

Theorem 4.3

Given the system S composed of N passive subsystems iS , if each MPC controller

 , 1,i i NC is augmented with the passivity constraint, as in (4.26h), then the overall closed-

loop system remains stable.

 56

Proof.

With the result from Theorem 4.2, the interconnection of the subsystems preserves passivity.

Thus, when proving stability of the overall closed-loop system, it is sufficient to show that

passivity is preserved for each subsystem iS in negative feedback with the MPC controller iC ,

as shown in Fig. 4.4. As in [48], the proof consists of demonstrating feasibility of (4.26) and

using this feasibility to show stability. From Theorem 2.28 in [45], when there is no throughput,

i.e. y h x , the feedback u y achieves asymptotic stability if and only if the system is zero

state detectable (ZSD). With ZSO established in Lemma 4.1, and thus also ZSD, it holds that

i iu y stabilizes (4.8). This property also holds true for i i iu y , where 0i . For any iy

there exists 0i such that i i i iu y . Since i i iu y is a stabilizing candidate control

law with 0T T
i i i i i iz u y y y , the constraint i iz is always feasible.

To prove stability, let C i i ii
V z z be a storage function for the controller iC , as is

done in [50], where 0C ii
V z since i iz . Thus the storage function for the closed-loop

subsystem is i Ci
V V where

,

,

.

T
i C i i ii

T T
i i i i

in
T T iin out

i i t
i

V V y u z

y u u y

P
x P

x

 (4.27)

Thus the closed-loop subsystem is passive with respect to the inputs and outputs that couple

subsystem iS to neighboring subsystems. With each closed-loop subsystem preserving passivity,

the overall closed-loop system remains passive and stable.

Remark 4.6

The passivity constraint (4.26h) is interpreted as a sector condition [44] as follows. The

constraint i iz limits the time spent in the sector 0T
i iu y . Based on the definition of ,i jy

for each edge from (4.20), this sector restriction limits operation that would cause a positive

 57

power flow from ,
tail
i jx to ,

head
i jx when , , 0head tail

i j i jx x thus preventing this difference from

growing further. Thus the controller must eventually make control decisions that prevents the

difference between neighboring states from growing and, as proved in Theorem 4.3, such a

control input always exists.

Remark 4.7

This approach differs from many of the approaches in literature [18], [55], [56], [59] which

assess the stability of a system of subsystems based on stability criteria of a global matrix which

captures the passivity/dissipativity properties of each subsystem, the network topology of the

subsystems, and the gains of the coupling between subsystems. For example, in [55] input-

feedforward output-feedback passivity of each subsystem is quantified using parameters i and

i where T T T
i i i i i i i iV u y u u y y . Then passivity and stability of the entire system is

established by evaluating the quasi-dominance of a matrix comprised of these i and i . Thus

determining stability requires analysis of the global system. The proposed approach leverages

the specific structure of the coupling between subsystems, allowing passivity and stability of the

system to be assessed locally for each subsystem without the need to analyze any global

properties of the system.

Remark 4.8

This set of decentralized controllers can be thought of as a stability-assurance control layer

similar to the supervisory stability layer (SSL) from [60]. Regardless of information or

references sent to the individual decentralized controller, the passivity-based stability constraint

will remain feasible and prevent the system from going unstable.

4.4.4 Hierarchical Closed-loop Stability

The decentralized control layer shown in Fig. 4.4 serves to guarantee stability of the

overall system but may lead to unacceptable control performance due to the unknown effects of

coupling between subsystems in the form of power flow from one subsystem to another. Thus,

hierarchical control can be used to improve the overall control performance of the system in the

form of additional control levels above the decentralized level, as shown in Fig. 4.5. The upper-

 58

level controllers 1,1C , 2,1 2C are designed to account for the coupling between subsystems and

send references to the low-level controllers 3,1 4C to achieve better coordination among

subsystems.

Due to the stability guarantee of the low-level decentralized controllers, the upper-level

controllers can be designed with only performance in mind and do not have to be augmented to

achieve stability. This provides the control design engineer a large degree of flexibility in the

formulation of the structure and individual controllers at the upper-levels of the hierarchy.

Figure 4.5 Example hierarchical control structure used to improve control performance via

coordination among subsystems. Only controllers 3,1 4C require passivity constraints,

forming a stability-assurance layer.

4.5 Numerical Example

The efficacy of the decentralized, passivity-based stability constraints is demonstrated

with the following numerical example. Fig. 4.6 shows the graph of a fluid tank system, which

has the same structure as the example system from Chapter 3. Each vertex iv corresponds to a

C3,1 C3,2 C3,3 C3,4

C2,1 C2,2

C1,1

System

State Measurements

Disturbances

References

Actuator Inputs

 59

Figure 4.6 Graph for example fluid tank system with four subsystems.

fluid tank and has a state ix which represents the height of the fluid in the tank in meters. For

this hydraulic system, conservation of energy for each vertex from (4.1) corresponds to

conservation of mass for each tank,

 ,i i j j
in outj E j Ei i

A x m m

 (4.28)

where 31000kg m is the density of the fluid and 2 4i iA d is the cross-sectional area of

the tanks, all with diameter 0.1id m . The power flows from (4.2) corresponding to mass flow

rate between the tanks. For flows between tanks controlled by pumps, as indicated in Fig. 4.6,

the mass flow rate along edge je is

 ,head tail
j j leak j jm Disp k x x (4.29)

where 1Disp kg rev is the displacement of the pump, j is the variable pump speed in

revolutions per second, and 0.005leakk kg m s is a leakage coefficient. For flows between

tanks controlled by valves, the mass flow rate along edge je is

 max ,tail head
j D j j jm C x x a (4.30)

1 7

3

2

13

8

9

4

6

5

10

11

12 14

1

2 3

4

5

6 7

8
9

10

11

17

12

13

14

15

16
18

1

inP

2

inP

1S

2S

3S

4S

Pump

Valve

 60

where max 0.5 %DC kg m s is the maximum discharge coefficient and ja is the variable

valve aperture in percent open. Based on these definitions for mass flow rate along each edge,

the conditions in Assumption 4.1 hold and the open-loop system is stable, satisfying Assumption

4.2.

The overall system is composed of four dynamically coupled subsystems, as indicated in

Fig. 4.6. As in Chapter 3, the four subsystem graphs are formulated and shown in Fig. 4.7. From

these graphs and (4.28)-(4.30), the corresponding subsystem dynamics from (4.8) can be derived.

Additionally, the passivity output iy for each subsystem can be determined as defined in (4.14).

For a pump edge ,i je in subsystem iS , the corresponding passivity output is

 , , , .tail head
i j i j i jy Disp x x (4.31)

Similarly, for a valve edge, the corresponding passivity output is

 max
, , , , , .tail head tail head

i j D i j i j i j i jy C x x x x (4.32)

Figure 4.7 Decomposition of the example system graph into four subsystem graphs used to

develop the four decentralized MPC controllers.

1 5

3

2

4

1

2 3

4

5

1

3

2

4

1

2 3 4

1

4

2

3

1

2

3

4

4

3

1

2 5

4

2

3

1
5

2,1

inP

2,2

inP

1,1

inP
3,1

inP

3,2

inP

4,1

inP

1S

2S

3S

4S

Pump

Valve

 61

For each subsystem iS , a MPC-based controller iC is designed based on the

optimization problem from (4.26), where

 2 2

2 2
, , 0.01 ,i i i i i ix u r x r u (4.33)

2secT , ,|i i i ju u j , and 0i . This optimization problem is discretized with

1sect and solved with an update rate of 1 Hz. YALMIP [41] and IPOPT [61] are used to

formulate and solve this optimization problem for each controller.

To demonstrate the role of the passivity-based stability constraints as a stability-

assurance layer within a hierarchical control framework, as discussed in Remark 4.8, an upper-

level controller 0C is also designed, which sends references ir to be tracked by each subsystem.

The structure of this control hierarchy is shown in Fig. 4.8. While the hierarchical control design

procedure from Chapter 3 could be applied for the design of 0C , for this Chapter, 0C has been

designed using a linearization of the system about the initial state 0x and has the form

0 : r Zx C . Following the same procedure, a small change in controller design parameters

resulted in two different Z matrices, stableZ and unstableZ , which as their name suggests,

resulted in stable and unstable closed-loop systems, as seen in Fig. 4.9. It is important to note

that the two matrices are very similar with stable unstableZ Z . In fact, using the normalized

distance between the two matrices, defined as

 2

2

100 ,
stable unstable

stable

Z Z
Z

Z

 (4.34)

the similarity of the two matrices can be quantified as 1.8%Z . The similarity of these

matrices and the corresponding disparity of their closed-loop behavior highlights a key challenge

when developing hierarchical controllers in practice. A priori assessment of the overall closed-

loop stability of the system can be very difficult due to the interaction of multiple control loops

and multiple subsystems. This is especially true with MPC-based controllers which, in general,

lack a closed-form control law.

 62

Figure 4.8 Simple control hierarchy for the example system where 1 4C are passivity-

constrained decentralized MPC controllers and 0C is a centralized reference generator

(signal coloring is the same as Fig. 4.5).

The stabilizing effect of the decentralized passivity constraints is shown in Fig. 4.9 for

representative states 2x and 10x in subsystems 1S and 4S , respectively. For both designs of 0 ,C

the closed-loop system remains stable and converges to the equilibrium. Note that more

aggressive transient behavior could be achieved by increasing the value of i . For the current

simulation results 0i and the accumulated passivity iz is shown for 1S in Fig. 4.10 for the

nominal and passivity-constrained control formulations. From the accumulated passivity, 1z , for

the nominal MPC with stableZ (red trace in the first subplot of Fig. 4.10), it is clear that even the

stable system response was not instantaneously passive, 1 1 1 0Tz u y , for the majority of the

transient. This highlights the well-known potential conservatism associated with a passivity-

based stability approach. This conservatism can be reduced by increasing the value of i and

allowing the system to violate passivity longer. Thus i should be designed based on the

application specific trade-off between the benefit of aggressive control and the cost of

potentially, yet temporarily, following an unstable trajectory.

C1 C2 C3 C4

System from Fig. 5.

C0

State Measurements

Disturbances

References

Actuator Inputs

 63

Figure 4.9 Representative state trajectories for 2x and 10x with stable and unstable

reference generator formulations and for the nominal and passivity-constrained MPC

designs.

4.6 Chapter Summary

This Chapter presented a purely decentralized procedure for augmenting existing model

predictive control formulations with a passivity-based constraint to guarantee closed-loop

stability of a power flow system. By establishing passivity of individual subsystems and

analyzing the structure of the interactions between subsystems, a stability guarantee for the

overall closed-loop system was achieved through simple, local augmentations to each controller

in the form of passivity constraints. While the control formulation in this Chapter used slack

variables on the state constraints to avoid infeasibility of the optimization problem, the following

Chapter presents a hierarchical control formulation for linear graph-based power flow systems

that guarantees constraint satisfaction in the presence of model and disturbance signal

uncertainty.

0 200 400 600 800 1000

0

20

40

60

0 200 400 600 800 1000
-5

0

50 200 400 600 800 1000

0

20

40

60

0 200 400 600 800 1000
-5

0

5

x2

x10

Zstable, Nominal

Zunstable, Nominal

Zstable, Passivity

Zunstable, Passivity

Time [s]

 64

Figure 4.10 Trajectories for 1z for subsystem 1S with the stable and unstable reference

generator formulations and for the nominal and passivity-constrained MPC designs. Note

that these trajectories are plotted separately due to the disparity in the magnitudes and

sign of the trajectories for the nominal and passivity-constrained scenarios.

0 200 400 600 800 1000

0

20

40

60

80

100

0 200 400 600 800 1000
-100

-50

0

50

1000 200 400 600 800 1000

0

20

40

60

80

100

0 200 400 600 800 1000
-100

-50

0

50

100

Time [s]

z1

Zstable, Nominal

Zunstable, Nominal

Zstable, Passivity

Zunstable, Passivity

1

100

z

 65

Chapter 5

Robust Feasibility

5.1 Motivation

With increasing performance demands, the power flow systems onboard vehicles are

required to safely function at the limit of their operating envelop. To maximize the capability of

the vehicle, systems must operate very closely to their actuator and state constraints without

exceeding these bounds. From a controls perspective, guaranteeing that system operation will

satisfy these constraints is critical for practical implementation. However, even when using MPC

to predict the future trajectories of the system to anticipate and avoid possible constraint

violations, the presence of model and disturbance signal uncertainty makes providing such

guarantees very difficult in practice. While a hierarchical control framework provides numerous

advantages in terms of control performance, the decentralization of control decisions and the

complexity of controller interactions make establishing constraint satisfaction guarantees even

more challenging.

5.2 Background

Building on a number of robust centralized [62]–[65] and distributed [66]–[69] MPC

formulations, several robust hierarchical MPC formulations have been developed in the

literature. In [70], a two-level hierarchical control approach is presented with a slow higher-level

and fast lower-level controller. The lower-level controller bounds deviations between the control

decisions made at each level and the higher-level controller is made robust to these deviations

using a min-max robust MPC formulation. This approach is extended in [71] by allowing the

lower-level of control to consist of m controllers for systems with decoupled actuator dynamics.

 66

The goal of the upper-level controller is to determine which actuators to enable along with their

desired control inputs, while the lower-level controllers determine the actual control inputs that

account for the dynamics of the actuators at a faster timescale. This work is further formalized in

[72]. Additional approaches are presented in [73]–[75] where two-level hierarchical controllers

are developed that act similar to reference governors, using dynamic actuators to satisfy system

constraints with guaranteed stability.

In each of these efforts, a two-level hierarchical framework is developed to handle the

timescale separation between the system and actuator dynamics. However, in practice many

systems have more than two timescales and an N -level hierarchical controller would be more

effective in controlling each timescale. While [76] presents a more generic mathematical

formulation for N -level hierarchical MPC, theoretical properties like robust stability and

feasibility are not established and the authors state that “much work is still needed.”

The goal of this Chapter is to modify the generic hierarchical control formulation from

Chapter 3 into a specific formulation that can maintain robust feasibility of actuator and state

constraints in the presence of model and disturbance signal uncertainty. The main features of the

proposed approach are:

1) the control hierarchy for a system with subN subsystems has N levels, with in

controllers at the thi level (1,i N , 1 1n , N subn N),

2) the formulation guarantees state and actuator constraint satisfaction in the presence of

both model and disturbance signal uncertainty,

3) model reduction is employed to reduce computational costs of the upper-level

controllers, and

4) all constraints are simple and numerically efficient to calculate offline and implement

online. With these benefits, the proposed approach relies on several assumptions

about the system and control formulation that are discussed throughout the Chapter.

 67

5.3 Linear Graph System Model

5.3.1 System Dynamics

Following the graph-modeling framework from Chapter 2, consider the power flow

system S represented by an oriented graph ,= V E of order vN with set of vertices

 , 1,i vV v i N and of size eN with set of edges , 1,j eE e j N . Each oriented edge

je E represents a path for power flow in S , where positive power jP flows from the tail

vertex
tail
jv to the head vertex

head
jv . Each vertex iv V has an associated state ix that

represents the amount of energy stored in that vertex. Thus the dynamic for the state of each iv

satisfies the discrete-time energy conservation equation

 ,i i
i j j

in oute E e Ej ji i

x x
C P P

t

 (5.1)

where t is the time step and 0iC is the energy storage capacitance of vertex iv while

 |in head
i j j iE e v v and |out tail

i j j iE e v v are the sets of edges oriented into and out of the

vertex iv .

Assumption 5.1

The power flow jP along edge je is defined as

 ,tail head
j j j j j j j jP a x b x c u P (5.2)

where
tail
jx and

head
jx are the states of the tail and head vertices

tail
jv and

head
jv , ju is an

associated actuator input, , 0j ja b , 0jc , and max
j jP P .

Remark 5.1

While a more generic power flow relationship is considered in (4.2), the set operations used for

constraint tightening in this Chapter rely on a linear system model and thus a linear power flow

 68

relationship. However, to allow the results of this Chapter to be applicable to a wider class of

systems, jP in (5.2) is treated as an unknown, yet bounded, disturbance. This disturbance

represents both model uncertainty and bounded linearization error when using (5.2) to

approximate nonlinear power flow relationships.

Following the same graph representation used in Chapter 4, the system S has states

Nvx that each satisfy (5.1) and power flows
NeP that each satisfy (5.2). The

disturbances to S capture how power enters and exits the system, with inlet power flows

Nin sP and sink states Nt tx . As indicated by dashed lines in Fig. 5.1, the inlet power

flow edges are not included in . Also indicated by dashed lines in Fig. 5.1, the sink states are

not states of S , but the sink vertices and the edges connecting S to the sink vertices are included

in . Power flows along this type of edge, denoted
Nout tP , each follow the relationship

from (5.2). Finally, each system has a subset
Nin sx of the states x that represents the states

directly affected by the inlet power flows
inP . Note that Figs. 4.1 and 5.1 are nearly identical,

with Fig. 4.1 showing the subsystem-based notation used in Chapter 4 while Fig. 5.1 shows the

system-based notation used in this Chapter.

Let

,
N N Nv t e

i jM m
 be the incidence matrix of graph [36] where

 ,

1 if is the tail of

1 if is the head of .

0 else

i j

i j i j

v e

m v e

 (5.3)

Then, based on (5.1), the system dynamics are

,

0

in

t t

C x x
D

tMP P

x x

 (5.4)

 69

Figure 5.1 Notional system exemplifying the graph-based power flow representation with

key power flows and states highlighted in red. Dashed lines indicate elements that serve as

disturbances to the system.

where iC diag C is a diagonal matrix of the vertex capacitances and ,
N Nv s

i jD d

where

 ,

1 if is the head of
.

0 else

in
i j

i jk

v P
d

 (5.5)

Since tx are disturbances to the system, not states, M is partitioned as
M

M
M

, with

N Nv eM

 and N Nt eM

 , resulting in

 .inC x x tMP DP (5.6)

From (5.2), the vector of power flows in S is

,

, ,

,

,

T
a b t

T T t
a b a b

x
P M u P

x

M x M x u P

 (5.7)

where

, ,
N N Nv t e

a b i jM m
 is a weighted incidence matrix with

P1
in

P2
in

x2
in

x1
in

P1
out

x1
t

S

x1

x2

x3

x4

x5

P1

P2

P3

P4

P5

P6

 70

 ,

if is the tail of

if is the head of

0 else

j i j

i j j i j

a v e

m b v e

 (5.8)

 jdiag c , ju u , and jP P . Thus the dynamics of S are given by

 1 2 3: ,in tx Ax B u V P V x V P S (5.9)

where 1
,

T
a bA I tC MM , 1B tC M , 1

1V tC D , 1
2 ,

T
a bV tC MM , and

1
3V tC M .

5.3.2 Dynamic Timescales

Let the state vector be subdivided as 1 2

T
T T T

Nx

x x x , where

iNv
i x denotes

a vector of states with the thi timescale where
1

N i
v vi

N N

 and j i kC C C for j jx x ,

iix x , kkx x , and j i k . Note that the number of levels of the hierarchy, N , matches the

number of timescales of the system.

5.3.3 Local Constraints

The system is subject to box state and actuator input constraints

 , ,
N Nv ex u (5.10)

where |
Nvx x x x , |

Neu u u u , and each set contains the origin.

5.3.4 Nominal System

While (5.9) represents the true system behavior, the nominal state trajectories, inputs, and

disturbances used by the hierarchical controller are denoted as x̂ , û , ˆ inP , and ˆtx , resulting in

the nominal system

 1 2
ˆ ˆˆ ˆ ˆ ˆ: ,in tx Ax B u V P V x S (5.11)

 71

Thus the unknown disturbances to the system, to which the hierarchical controller must be

robust, are ˆin in inP P P , ˆt t tx x x , and P . These disturbances are assumed to be

bounded with in inP , t tx , and P . As with and , these disturbance

sets are assumed to contain the origin and are defined by box constraints.

5.3.5 Control Objective

The control objective is to satisfy all state and input constraints from (5.10) while

minimizing the finite-horizon, system-wide cost function

0

, , , ,

Nop
s t

k

J k x k u k k k

 (5.12)

where opN is the operational duration of the system in time steps and () is a generic running

cost. To minimize deviation from ˆ in
desP and ˆt

desx , (5.12) is designed to heavily penalize

2

2

s k I and
2

2

t k I .

5.3.6 Feedback Integralization

To significantly simplify the hierarchical control formulation, the control law

 1
,

T
a b t

x
u P M

x

 (5.13)

is implemented to convert the linear system (5.9) into the integrator system

 0 1 3: ,inx x BP V P V P S (5.14)

where P is the desired power flow vector. The corresponding nominal control law

 1
,

ˆ
ˆˆ

ˆ

T
a b t

x
u P M

x

 (5.15)

converts the nominal linear system (5.11) into the integrator system

 72

 0 1
ˆ ˆ ˆˆ ˆ: ,inx x BP V P S (5.16)

where P̂ is the nominal power flow vector.

Remark 5.2

The feedback control law from (5.15), referred to as feedback integralization, forces nominal

state trajectories to evolve piecewise linearly. As discussed in the following Section, the

controllers at the upper levels of the hierarchy use slow update rates designed to match the slow

dynamics under control at that level. When converting a discrete-time model from a fast update

rate to a slow update rate, as described in [70], no additional model error is introduced by this

conversion, but information about the state trajectory between the slow updates is lost. By

converting the linear system to an integrator system, (5.15) ensures that the intersample state

trajectory is bounded by state values at the neighboring slow time steps, i.e. no over/undershoot

between slow time steps occurs. This is key in guaranteeing that the state trajectories determined

by the upper-level controllers are feasible for tracking by the lower-level controllers. Fig. 5.2

demonstrates this notion and the benefit of the feedback integralization. Finally, (5.13) can be

implemented for each edge independently using 1 tail head
j j j j j j

j

u P a x b x
c

 .

5.4 Hierarchical Control Structure

5.4.1 Subsystem Interconnections

Let S be decomposed into subN non-overlapping subsystems , ,i subi i NS .

Definition 5.1

A ,u v path in is a sequence of oriented edges connecting two distinct vertices ,u v V , not

including any sink vertices as intermediate vertices.

Assumption 5.2

If i iv S and ,j jv i j S and there exists a ,u v path in , then there does not exist a

,v u path in .

 73

Figure 5.2 (a) The upper-level controller plans a feasible state trajectory at the slow time

step 1k but the lower-level controller is unable to track this trajectory at the faster time

step 2k without violating state constraints. (b) Using the feedback integralization control

law from (5.15), the system follows piecewise linear state trajectories; thus any trajectory

that is feasible at the slower time step 1k is also feasible at the faster time step 2k .

Remark 5.3

Assumption 5.2 prevents cyclical connections between subsystems, simplifying the process for

identifying in for power flows coming from neighboring subsystems. An example of an

acyclic graph of subsystems is shown in Fig. 5.3. If systems with cyclically connected subsystems

are of interest, a more centralized approach for calculating in can be adopted from [66].

5.4.2 Control Structure

To control the N dynamic timescales, a hierarchical control framework with N levels is

proposed where one of the main functions of controllers at the thi level is to control states at the

thi timescale. At the lowest level of the hierarchy, each subsystem jS has a corresponding

controller ,N j
C that uses a nominal subsystem model, denoted ,ˆ N j

S . These controllers have a

time step of Nt t and use the time index Nk . The controllers at levels 1N through 1 of

the hierarchy coordinate control decisions between these subsystems and have slower update

rates to more effectively control the slower timescale dynamics of the system. Thus the thj

x

x

k2 k2+1 k2+5 k2+10

k1 k1+1 k1+2

x

x

k2 k2+1 k2+5 k2+10

k1 k1+1 k1+2

(a) (b)

t t

 74

Figure 5.3 (a) An example system graph decomposed into subsystems. (b) The

interconnection of these subsystems is acyclic.

controller at the thi level, ,i j
C , has a time step of it , where 1 1i i it t and 1i is a

positive integer, with a discrete time index ik . The thi level of the hierarchy has in controllers

where N subn N , 1 1n , and 1i in n .

Fig. 5.4 provides an example of a 3-level hierarchy that demonstrates the proposed

formulation.

5.4.3 Nominal Subsystems for Level N Controllers

The nominal subsystem model for jS follows the same model development used for the

entire system model in Section 5.3 where

 ,

10
ˆ ˆ ˆˆ ˆ: .

N j inx x BP V P S (5.17)

Note the abuse of notation used for improved readability, where x̂ , P̂ , ˆ inP , B , and 1V are all

specific to jS and occur at time index Nk .

5.4.4 Nominal Reduced Subsystems for Level i Controllers, i ∈ [1,N - 1]

An agglomerative, or bottom-up, clustering scheme [77] is used to form the subsystems

at the thi level based on the subsystems at level 1i . At the thi level, the thj subsystem

 ,
, 1,

i j
ij nS , consists of subsystems

 ,
,,

N l
i jl IS , where ,i jI denotes the set of constitutive

1 7

3

2

13

8

9

4

6

5

10

11

12 14

1

2

3

4

1

2

3

4

(a) (b)

P1
in

P2
in

 75

Figure 5.4 Example 3-level hierarchy where 3N , 4subN , 2 3 3 , 2,1 {1,2}I ,

2,2 {3,4}I , and 1,1 {1,2,3,4}I . The notation ()ix k refers to a sequence of x values at time

steps { , , }i
i i pk k N .

Level N subsystems. Since all subsystems at Level N are included in the agglomerated

subsystems at Level i , ,

1

[1,]

ni

i j sub

j

I N

 . Additionally, a subsystem at Level N can only be

included in a single subsystem at Level i , thus , , ,i j i kl I l I k j . The nominal subsystem

model
 ,

0
ˆ i j
S is used to derive a reduced model

 ,

0
ˆ r i j
S to be used by controller ,i j

C . Model

reduction reduces the dimension of the state and power flow vectors as follows.

For subsystem
 ,

0
ˆ i j
S , the state vector is decomposed as

S

1S 2S 3S 4S

 3,4

0C
 3,3

0C
 3,2

0C
 3,1

0C

 3 3 3 3

1 tail head

j j j j j j

j

u k P k a x k b x k
c

 3,4
C

 3,3
C

 3,2
C

 3,1
C

 2,1
C

 2,2

0C

 1.1
C

2t

3t

k 1k

3k

3k

2k

1k

2 1k

3 1k

3 1k

1 1k

 1 1

, ,

ˆ ˆ,

in t

in t

des des

P k x k P k

P x

k k

3 3

3

, t

i i

i

x k x k

u k

3 3

,

ˆ ˆ,

ˆ ˆ,
i i

low

r i i i i

P k x k

x k x k

 , , ,
ˆ ˆˆ ˆ, , , ,in t up out low

i i i i des i i des i i des i iP x x P xk k k k k

1t

 76

ˆ

ˆ ˆ ˆ, , .
ˆ

Nr N fr
r f

f

x
x x x

x

 (5.18)

In this work, the states of the reduced model are ,zˆ ˆr rx x , where

(1) ,ˆ ,r z ix x

(2)
 1

, 1,
,

ˆ ˆ ,for
i

r z r i k
k

x x j I

 S , and/or

(3) 1,
, ,o , .ˆ f r

i lin
r z i jx x l I

 S

All remaining states of the nominal subsystem model are denoted ˆ fx and are excluded from the

reduced model.

Remark 5.4

The reasoning for including these three types of states is as follows. The first set of states aligns

with the overall principle of a hierarchical controller: controllers at the thi level determine the

desired state trajectories for states with the corresponding timescale. The second set of states is

included to achieve coordination between the control levels. The desired state trajectories for

these states are determined at Level 1i and are tracked by the controllers at Levels i through

N . Finally, the third set of states is used to achieve coordination between subsystems at Level

1i . Since the states of these vertices affect the power flow exiting neighboring subsystems,

coordinating the values of these states is important. The desired trajectories for these states are

determined by controllers at Level i and then sent down as a desired state trajectory to be

tracked by a controller at Level 1i and as a known sink state disturbance to the controllers for

the neighboring subsystems.

The decomposed subsystem dynamics are

ˆ ˆ

ˆ ˆ .
ˆˆ

r r r r in

f f ff

x x B V
P P

x B Vx

 (5.19)

In
 ,

0
ˆ r i j
S , it is assumed ˆ ˆ1f i f ix k x k , resulting in

 77

 ˆ ˆ 0.in
f i f iB P k V P k (5.20)

Thus (5.20) provides fN constraints that can be used to reduce the decision vector ˆ NeP to a

reduced decision vector ˆ N Ne f
rP

 where

 ˆ ˆ ˆ .in
i r i iP k TP k YP k (5.21)

Calculation of
()N N Ne e fT

 and e NsN
Y

 is detailed in the Appendix at the end of this

Chapter. The reduced subsystem is

 i,

0
ˆ ˆ ˆ ˆ ˆˆ ˆ: ,

r j in
r r r r rx x B P V P S (5.22)

where ˆ
r rB B T and ˆ

r r rV V B Y .

Remark 5.5

While the graph-based model reduction approach presented in Section 3.6 can be used for

developing the generic hierarchical controller in Chapter 3 and visually shows the reduced

graphs, this Chapter utilizes the residualization-based approach [78] presented above that

results in no modeling error between the full and reduced nominal integrator system dynamics.

5.5 Level N Controller Formulation

Following a bottom-up control development approach, the subsystem models and

controllers for Level N are generated first.

5.5.1 Error Subsystem

With the nominal subsystem dynamics from (5.17) and the true subsystem dynamics as

 ,

1 30 : ,
N j inx x BP V P V P S (5.23)

a candidate control law for
 ,

0
ˆ N j
S is defined as

,

0
ˆ ˆ: .

N j
P P K x x C (5.24)

 78

Letting ˆN N Ne k x k x k , from (5.17), (5.23), and (5.24), the error dynamic between the

true and nominal subsystem is

 1 .ine I BK e B P V P (5.25)

Choosing
†K B , (5.25) reduces to

 1 .ine B P V P (5.26)

Since P k and in inP k , there exists a robust positively invariant (RPI) set

such that e k k . From (5.26), 1
inVB . Similarly ˆP k P k K k .

Remark 5.6

The candidate control law from (5.24) with
†K B requires the existence of the right inverse

of 1B tC M . It is well established that the column sums of the incidence matrix M are

zero for a connected graph, resulting in linearly dependent rows of M . However, when a

subsystem is externally connected, i.e. ,
0

i j
tN , M contains nonzero values and the rows of

M become linearly independent. When the rows of a matrix A are independent,
†AA I . Thus,

assuming
 ,

0
i j

tN for all subsystems, a controller with
†K B is valid and () 0I BK .

Remark 5.7

When the thj power flow into a subsystem,
in
jP , comes from the environment, i.e. external to the

entire system, the bound on ˆin in in
j j jP P P is assumed to be a known property of the system

and is used to define in for the subsystem. However, when
tin

j
ouP P of a neighboring

subsystem, the bound on
in
jP is not immediately known. However, using the acyclic assumption

from Assumption 5.2, this bound equals the bound on ˆP P K for the corresponding edge

exiting that neighboring subsystem. Thus calculating in for each subsystem is a sequential

process starting with the subsystem having inlet power flows exclusively from the environment.

 79

Using the example from Fig. 5.3, the subsystems 1S - 4S can be ordered as

 1 2 4 3, , ,S S S S to calculate the bounds on
in
jP for each subsystem since 1S only has inlet

power flow from the environment, 2S only has inlet power flow from the environment and 1S ,

and so on.

5.5.2 Constraint Tightening

Using the constraint tightening approach from [62], ,N j
C constrains

 .ˆ ˆ
Nx k Additionally, using (5.13), the constraint on actuator inputs is imposed as

 1
, .T

a b t

x
u P M

x

 (5.27)

From comparing (5.13) and (5.15),

 1
, .ˆˆ T

a b t

e
u u P P M

x

 (5.28)

Due to the difference between the desired power flow P and the nominal power flow P̂ , where

 ˆ
N NP k P k K , ,N j

C imposes tightened input constraints as

 1
,

ˆ
ˆˆ

ˆ

ˆ ,T
a b t

x
u P M

x

 (5.29)

where

 1 1 1
, ,

ˆ .T T t
a b a bK M M (5.30)

Note that when tx corresponds to a sink of the overall system,
t is defined. However, when

tx corresponds to a state of a neighboring subsystem,
t is not directly known but can be

calculated based on the error set for that neighboring subsystem.

 80

5.5.3 Level N MPC Problem

Each controller ,N j
C solves the optimization problem

 ,N j
Nk :

 ,

ˆ : 1

min
N j

N
NP k k NN N p

J k

 (5.31a)

 subject to, for : 1 ,N
N N ph k k N

 1
ˆ ˆˆ ˆ1 ,inx h x h BP h V P h (5.31b)

 ˆ ˆ ,x h (5.31c)

1

,
ˆ

ˆ
ˆ

ˆ
,T

a b t

x h
P h M

x h

 (5.31d)

 1 ˆ ˆ ,
upup in
desZ C MP h DP h x h

 (5.31e)

 ˆ ˆ ,out out
desP h P h (5.31f)

 ˆ ,ˆlow lo
l

w
d s owe Nx h x k (5.31g)

where ˆ inP h , ˆtx h , up
desx h , ˆout

desP h , and ˆlow
des Nx k are communicated from controllers at

Level 1N .

Remark 5.8

Constraint (5.31e) uses the matrix
upZ to constrain the power flows into and out of the vertices

with states included in a controller at Level 1N . Constraint (5.31f) ensures that the power

flows exiting a subsystem equal the power flows determined by the upper-level controller.

Finally, constraint (5.31g) bounds the deviation between the trajectories of states not included in

upper-level controllers and the assumed value ˆlow
desx used by those upper-level controllers. Note

that ˆlow
desx is constant over the prediction horizon. The box constraint set low includes the

 81

origin and the size of the set determines the trade-off between conservativeness of upper-level

controller and the freedom of lower-level controllers.

5.6 Level i Controller Formulation (i ≠ N)

5.6.1 Constraint Tightening

No additional state constraint tightening is required and thus
 ,

,
i j

Ni C , constrain

 ˆ ˆ
r i rx k where ˆ

r is formed directly from the box constraints of ˆ .

The input constraints do need additional tightening to ensure robustness to

 ˆ ˆlow low
i des ix k x k . Using the state decomposition from (5.18) and adding and subtracting

 ˆlow
des ix k , (5.29) becomes

 1
,

ˆ ,

ˆ

ˆ ˆ ˆ ˆ

ˆ

r i

T low T low
i a b des i f f i des i

t
i

x k

P k M x k M x k x k

x k

 (5.32)

where fM is the portion of ,a bM corresponding to the fast states. Since (5.31g) bounds the

difference between ˆ fx and ˆlow
desx , the input constraints are further tightened such that

1
,

ˆ

ˆ ˆ ˆ ,

ˆ

r i

T low
i a b des i

t
i

r

x k

P k M x k

x k

 (5.33)

where ˆ ˆ
r f lowM . Note that low is a set similar to low from (5.31g) but the

box constraints are twice the magnitude of those in low . This is due to the following. The

Level 1 controller is constrained such that 0 1 1ˆ ˆlow low
de ws lox k x k , where ˆlowx is the current

values of ˆ fx , the states not included in the reduced model for the Level 1 controller, and ˆlow
desx

are the values of ˆ fx chosen by the controller that remain constant over the prediction horizon.

 82

The values ˆlow
desx are communicated down the hierarchy, where each controller at Levels 2

through N is constrained such that ˆ ˆlow low
i des owi lx k x k and ˆlowx are the trajectories of

the states in the lower-level controller model that were approximated by ˆlow
desx for the controller

at Level 1. This two-step process for constraining these fast state trajectories requires the

constraint tightening using low , instead of low , as defined above.

To ensure feasibility using the control law from (5.27) it is necessary to impose the

additional constraint

1
,

ˆ 1

ˆ ˆ

ˆ 1

ˆ ,

r i

T low
i a b de i rs

t
i

x k

P k M x k

x k

 (5.34)

so that, as the states evolve between time steps, there is always an input ˆ ˆ
Nu k to achieve

the desired power flow ˆ
iP k at the faster time steps Nk between the slower time steps ik and

1ik . Note that ˆ ˆ 1low low
des i des ix k x k since ˆlow

desx is assumed constant over the prediction

horizon.

5.6.2 Level i MPC Problem (i ≠ N, i ≠ 1)

Each controller
 ,

, 2, 1
i j

i N C , solves the optimization problem
 ,i j

ik :

 ,

ˆ : 1

min
i j

i
iP k k Nr i i p

J k

 (5.35a)

 subject to, for : 1 ,i
i i ph k k N

 ˆ ˆ ˆ ˆˆ ˆ1 ,in
r r r r rx h x h B P h V P h (5.35b)

 ˆ ,ˆ rrx h (5.35c)

 ˆ ˆ ˆ ,in
rP h TP h YP h (5.35d)

 83

1
, ,ˆ ˆ

ˆ

ˆ

ˆr

T low
a b de i

t

rs

x h

P h M x k

x h

 (5.35e)

1
,

ˆ 1

ˆ ˆ

ˆ

ˆ

1

,

r

T low
a b des i

t

r

x h

P h M x k

x h

 (5.35f)

 1 ˆ ˆ ,
upup in
desZ C MP h DP h x h

 (5.35g)

 ˆ ˆ ,out out
desP h P h (5.35h)

 ˆ ,ˆlow lo
l

w
d s owe ix h x k (5.35i)

where ˆ inP h , ˆtx h , up
desx h , ˆout

desP h , and ˆlow
des ix k are communicated from controllers at

Level 1i .

5.6.3 Level 1 MPC Problem

The single controller 1,1
C solves the optimization problem

 1,1
1k :

 1,1
1

1ˆ ˆ: 1 ,1 1 1

1 1: 1 , :1 1 1 1

min
lowP k k N x kr p des

s tk k N k k Np p

J k

 (5.36a)

 1
1 1subject to, for : 1 ,ph k k N

 ˆ ˆ ˆ ˆˆ ˆ1 ,in
r r r r rx h x h B P h V P h (5.36b)

 ˆ ,ˆ rrx h (5.36c)

 ˆ ˆ ˆ ,in
rP h TP h YP h (5.36d)

 84

1
, 1

ˆ

ˆ ˆ

ˆ

ˆ ,

r

T low
a b de

t

rs

x h

P h M x k

x h

 (5.36e)

1
, 1

ˆ 1

ˆ ˆ

ˆ 1

ˆ ,

r

r
T low
a b des

t

x h

P h M x k

x h

 (5.36f)

 ˆ ˆ ˆ ˆ, ,in s in t t t
des desP h h P h x h h x h (5.36g)

 0 1ˆ ,ˆlow low
owe ld sx x k (5.36h)

 1 1
1 1ˆ ˆ 1 ,r p r px k N x k N (5.36i)

where ˆ in
desP h and ˆt

desx h are provided directly to the controller and 0ˆ
lowx is the current value

of ˆlowx communicated up the hierarchy from the controllers at Level N .

Assumption 5.3

The desired nominal disturbances ˆ in
desP and ˆt

desx are known over the entire prediction horizon of

the hierarchical controller and are piecewise constant between updates of the controller at the

highest level of the hierarchy.

The controller has the ability to augment these values in order to maintain feasibility.

Thus, from (5.36g), the nominal values are ˆ ˆin s in
desP k k P k and ˆ ˆt t t

desx k k x k

where s s
idiag

 and t t

idiag

 are diagonal matrices with ,t s
i i .

Remark 5.9

While this is a strong, and possibly limiting, assumption, the proposed framework can be readily

extended to be robust to intersample changes in disturbances through additional constraint

tightening.

 85

Remark 5.10

Constraint (5.36i) helps with the proof of feasibility presented in Section 5.7 and guarantees that

 s s
idiag

 and t t

idiag

 are chosen such that there is a feasible solution that

allows all states to remain constant at the end of the prediction horizon.

5.7 Recursive Feasibility

Assumption 5.4

There exists a neighborhood containing the origin, 0 0 , such that if 0x k then

 1,1
1k is feasible with optimal solution

 * * * 1
1 1 1

ˆ ˆ ˆ,..., 1r r r pk P k P k N P (5.37)

and associated nominal state trajectory

 * * * 1
1 1 1ˆ ˆ ˆ,..., .r r r pk x k x k N x (5.38)

Theorem 5.1

If 0x k , then the solution

 * * * 1 * 1
1 1 1 1

ˆ ˆ ˆ ˆ1 1 ,..., 1 , 1r r r p r pk P k P k N P k N P (5.39)

with

 * * * 1 * 1
1 1 1 1ˆ ˆ ˆ ˆ1 1 ,..., ,r r r p r pk x k x k N x k N x (5.40)

is feasible for
 1,1

1 1k . Furthermore, the feasibility of
 1,1

1k guarantees the feasibility of

 ,i j
ik for any lower-level controller.

 86

Proof.

The proof is outlined as follows. First, it is established that the states and power flows of the

system remain close to the nominal states and power flows determined by the hierarchical

controller. This allows the hierarchy to only require knowledge of the nominal states and power

flows; the true system state is not used by any MPC controller in the hierarchy. The feasibility of

lower-level controllers follows directly from the feasibility of
 1,1

1k . Feasibility of

 1,1
1 1k follows from the constraints imposed by each lower-level controller and the

existence of a solution where all states remain constant at the end of the prediction horizon.

 By implementing the feedback integralization control law (5.13) and the candidate

control law (5.24), the error dynamic between the true and nominal states follows (5.26). Thus at

any timestep, Ne k and ˆ
N NP k P k K and the proposed constraint tightening from

Section 5.5.2 guarantees that ˆˆ N xk kx and ˆˆ N uk ku .

From Assumption 5.4, there exists 0x k such that
 1,1

1k is feasible. The optimal

reduced power flow solution *
1

ˆ
r kP is related to the optimal unreduced power flow solution

 *
1

ˆ kP via (5.21). From the construction of the reduced state and input constraints,

 1 1
ˆˆ ˆˆr rrx k x k and 1 1

ˆ ˆˆˆ rk ku u , and thus, if *
1

ˆ kP is feasible for

 1,1
1k , these power flows form a feasible solution for all

 ,
, 2,

i j
i NC . This solution

provides perfect tracking of ˆrx and constant trajectories for ˆ fx of
 1,1

0Ŝ .

If all controllers
 ,

, 2,
i j

i NC are feasible, the desired state trajectory *
1ˆ r kx for

 1,1
C is tracked perfectly based on the constraints (5.31e) and (5.35g). Thus

 * *
1 1 1 1ˆ ˆ1| 1 1|r rx k k x k k . If *

1ˆ r kx is a feasible solution for 1,1
C , then

 * 1 * 1
1 1ˆ ˆ 1r p r px k N x k N from constraint (5.36i). This implies that

 * 1 1
1 1

ˆ ˆ ˆ ˆ1 1 0in
r r p r pB P k N V P k N . Since *

1ˆ 1r k x assumes

 87

 * 1 * 1
1 1ˆ ˆ1r p r px k N x k N , it is desired that * 1 1

1 1
ˆ ˆ ˆ ˆ 0in
r r p r pB P k N V P k N which is

always feasible with * 1 * 1
1 1

ˆ ˆ 1r p r pP k N P k N and use of 1
1

s
pk N .

Additionally, if all controllers
 ,

, 2,
i j

i NC are feasible, then

 1 1ˆ ˆ1low low
de ls owx k x k . Thus, a feasible solution at time step 1 1k is

 1 1ˆ ˆ1low low
des desx k x k . Since * 1 * 1

1 1ˆ ˆ1r p r px k N x k N , * 1 * 1
1 1

ˆ ˆ 1r p r pP k N P k N ,

and 1 1ˆ ˆ1low low
des desx k x k , feasibility of

 1,1
1 1k only depends on the feasibility of (5.36f)

with regard to 1
1ˆ 1t

px k N . Using 1
1 1t

pk N , (5.36f) is always feasible. Thus, with

 1,1
1k feasible, all lower-level controllers are feasible and

 1,1
1 1k is feasible, proving

the theorem.

5.8 Numerical Example

The efficacy of the proposed robust hierarchical control framework is demonstrated with

the following numerical example that, as shown in Fig. 5.5, has the same structure as the

example systems from Chapters 3 and 4 but is not intented to represent a particular physical

system. The vehicle consists of two systems, each with two subsystems, and thus, the control

hierarchy has the same general structure as those shown in Figs. 5.4, 3.5, and 4.5. The individual

subsystem and system graphs are shown in Figs. 5.6 and 5.7. The Matlab/Simulink code used to

implement the robust control hierarchy for this example system is provided in the Appendix.

For each edge je E , the parameters defining the power flow relationship from (5.2) are

1j j ja b c . The vertex capacitances from (5.1) are 1 2 1000C C , 3 7... 100C C , and

8 12... C 10C . The state and input constraints from (5.10) are defined such that

1 1, iix v V and 1 1, jju e E . The disturbance power flow from (5.2) is defined

with
max 0.1jP . The input power flow disturbance set in is defined with

ˆ0.1 0.1in in in
i i iP P P and the sink state disturbance set

t is defined with

 88

ˆ0.1 0.1t t tx x x . Finally, for the additional constraint tightening in (5.33), low is

defined with 0ˆ ˆ0.1 0.1low low
desx x , and thus low is defined with 0ˆ ˆ0.05 0.05low low

desx x .

Figure 5.5 Example system graph for numerical example.

Figure 5.6 Subsystem graphs for numerical example.

3 11

9

8

2

5

4

1

10

6

7

12

1

2 3

4

5

6 7

8
10

11

12

13

14

9

15

17

16
18

Vehicle

Sys 1 Sys 2

Sub 1

Sub 2

Sub 3

Sub 4

Source/Sink

Fast Dynamics

Medium Dynamics

Slow Dynamics

P1
in

P2
in

x1
t

x2
t

3 x11

9

8

x10

1

2 3

4

8

Sub 1

4

1

10

x7

5

6 7 9

Sub 2

11

x1
t

2

5

10

11

12

13

Sub 3

x11

6

7

12 x2
t

14

15

17

16
18

Sub 4

Source/Sink

Virtual Source/Sink

Fast Dynamics

Medium Dynamics

Slow Dynamics

P2
in

P1
in

P4

P8

P14

P9

1
sub

2
sub

3
sub

4
sub

 89

Figure 5.7 System graphs for numerical example.

The controller time steps are chosen to be 1 100t , 2 10t , and 2 1t t with

prediction horizons
1 2 3 5p p pN N N . The cost function from (5.12) is defined with

2 22 6 6

2 2 2
, , , 10 10s t s tx k u k k k u k u k k I k I . (5.41)

For the model reduction from (5.18), the state decompositions for System 1,
 2,1

0Ŝ , is

 1 3 4 10ˆ
T

rx x x x x , 8 9ˆ
T

fx x x , (5.42)

for System 2,
 2,2

0Ŝ , is

 2 5 6 7 10ˆ
T

rx x x x x x , ˆ 12fx , (5.43)

and for the Vehicle,
 1,1

0Ŝ , is

 1 2 7 11ˆ
T

rx x x x x , 3 4 5 6 8 9 10 12ˆ
T

fx x x x x x x x x . (5.44)

All set computation is performed with the Multi-Parametric Toolbox 3.0 [79]. The MPC

optimization problems are formulated using the YALMIP Toolbox [41] and solved using the

Gurobi optimization suite [42].

3

9

8

4

1

10

1

2 3

4

5

6 7

8

9

Sys 1

P1
in

P2
in

11

2

5

6

7

12

10

11

12

13

14

15

17

16
18

Sys 2

x1
t

x2
t

x11

x7

P8

P9

2
sys

1
sys

 90

Fig. 5.8 shows a simple disturbance profile for ˆ in
desP used to demonstrate some of the key

features of the robust hierarchical controller. The actual “throttled” inlet power flows ˆ inP are

also shown in Fig. 5.8 based on the maximum feasible inlet power flow determined by 1,1
C

using 1
s k in (5.36g). Note, that the sink states are held at ˆ ˆ 0t t

desx x . Uniformly

distributed random signals of maximum amplitude are applied for P ,
inP , and tx .

Figure 5.8 Disturbance profile for numerical example with desired and actual inlet power

flows.

The following figures show the robustness properties of the hierarchical controller. Fig.

5.9 demonstrates the constraint tightening for actuator inputs 8u and 16u . The actual inputs are

bounded by 1 1iu which form the input constraint set . The notation 8,16 is used to

denote the projection of into the 8th and 16th coordinates. The tightened inputs used by

subsystem controllers at Level 3 are shown by 8,16
ˆ and the further tighten inputs used by the

vehicle controller at Level 1 are shown by ,8,16
ˆ
r . Note that the nominal inputs must satisfy

ˆ ˆu but the subsystem controller are capable of inputs such that ˆˆ ru U . This is a result of the

additional constraint tightening employed but the controllers at Levels 1 through 1N . Based on

(5.28), the difference between û and u is bounded and based on the constraint tightening, if

ˆ ˆu then u , as shown in the figure.

Time [s]

Pin

Pin

Pin
des,1

des,2

P2
in

P1
in

 91

Figure 5.9 Nominal and actual inputs for edges 8e and 16e with the nominal input

constraint sets 8,16 , the tightened input constraint set 8,16
ˆ used by the subsystem

controllers at Level 3 and, and the tighten input constraint set ,8,16
ˆ

r used by the vehicle

controller at Level 1.

Fig. 5.10 demonstrates the bounded difference between the nominal state trajectory 11x̂

and the actual state trajectory 11x for vertex 11v . Based on the error dynamic from (5.26),

11 11 11ˆx x , where 11 is the projection of the error set onto the 11th coordinate, as shown

in the figure.

Similarly, Fig. 5.11 demonstrates the bounded difference between the nominal power

flow trajectory 4P̂ and the desired power flow trajectory 4P along edge 4e . Based on the error

dynamic from (5.26) using the candidate control law from (5.24), 4 4 4
ˆP P K , where K

and are the candidate controller and error sets for Subsystem 1, as shown in the figure.

1

0.5

0

-0.5

-1

-1 -0.5 0 0.5 1

u8

u16

8,16

,8,16
ˆ
r

8,16
ˆ

 8 16ˆ ˆ,u u

 8 16,u u

 92

Figure 5.10 Nominal and actual state trajectories for vertex 11v with error set showing the

bounds on the deviation between 11x and 11x̂ for which the hierarchical controller is

robust.

Figure 5.11 Nominal and desired power flow trajectories along edge 4e with error set

showing the bounds on the deviation between 4P and 4P̂ for which the hierarchical

controller is robust.

Time [s]

x11

x11

 11

11 11x̂

Time [s]

P4

 4
 4

 4 4
P̂ K

 93

The bounded difference between the nominal and desired power flows P̂ and P is used

to formulate the input power uncertainty set in for subsystems that have inlet power flows

from neighboring subsystems. Fig. 5.12 demonstrates the formation of in for Subsystem 3

based on the differences 8 8
ˆP P and 14 14

ˆP P for edges 8e and 14e .

Figure 5.12 Deviations between the desired and nominal power flows for edges 8e and 14e ,

which form
inP for Subsystem 3, with the set in for Subsystem 3.

Finally, Fig. 5.13 shows the nominal and actual state trajectories for vertex 10e . Based on

the constraint (5.31g), the nominal trajectory 10x̂ , determined by the Subsystem 2 controller at

Level 3, must remain close to the desired value ,10ˆlow
desx determined by the Vehicle controller at

Level 1. By satisfying 10 ,10 ,10ˆ ˆlow
lodes wx x , the Subsystem controller is able to optimize the

trajectory of 10x̂ with respect to its own local cost function within a neighborhood of the

assumed trajectory determined by the Vehicle controller.

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.2 -0.1 0 0.1 0.2

 8 - 8

 14 - 14

in

 94

Figure 5.13 Nominal and actual state trajectories for vertex 10v with error set showing the

bounds on the deviation between 10x̂ and ,10ˆlow
desx determined by the Vehicle controller at

Level 1.

5.9 Chapter Summary

This Chapter presented a generic N -level hierarchical control framework based on MPC

and a graph-based model of a power flow system that was proven to be robustly feasible at each

level of the hierarchy in the presence of model and signal uncertainty. The novel approach

utilizes a constraint tightening procedure where all tightened constraints are simple and

numerically efficient to calculate offline and implement online. This concludes the theoretical

contributions of this dissertation and the remaining Chapters assess the practicality of

hierarchical control through graph-based modeling and control of an experimental thermal fluid

system.

5.10 Chapter Appendix

The following is used to calculate the matrices
()N N Ne e fT

 and e NsN
Y

 for the

model reduction from (5.21). Let
 Ne sN f N

R

 be the reduced row echelon form of

f fA B V using Gauss-Jordan elimination. Let , 1,j fb b j N be a set of indices

x10

 10

,10 ,10ˆlow
des lowx

Time [s]

x10

 95

such that (:,)A b is a basis of the range of A . Note that (:,)A b denotes a matrix with columns of

A indexed by b . Let , 1,r j e fE e j N N be the set of edges corresponding to the

reduced power flow vector ˆ
rP where \ { : and }r j j jE E b e e E e b . Let (:,)rR R E .

Then, ,i jT t where

 ,

1 if ,

, if , .

0 else

j j r

i j k k

i e e E

t R k j i b b b

 (5.45)

Let :, 1:s
e e sR R N N N . Then, ,i jY y where

,

, if ,
.

0 else

s
k k

i j

R k j i b b b
y

 (5.46)

 96

Chapter 6

Graph-based Modeling of a Thermal Fluid System

6.1 Motivation

From the generic graph-based modeling framework presented in Chapter 2, the objective

of this Chapter is to demonstrate the value and applicability of the graph-based modeling

framework for thermal fluid systems through experimental validation. A modular, and readily

expandable experimental testbed is presented and used to showcase the ability of a graph-based

modeling framework to capture the dynamics of a thermal fluid system. Furthermore, it is shown

that a graph-based modeling approach provides a single flexible framework in which power flow

dynamics can be represented using nonlinear or linear relationships.

6.2 Background

Conventional approaches to modeling and control of complex systems-of-systems are

often limited to decentralized high-fidelity modeling and robust, low performance proportional-

integral and logic-based control [26]. Holistic modeling, analysis, and control design is inhibited

by the complexity and size of the systems, especially when dynamics evolve over a wide range

of timescales and energy domains. As the complexity of systems continues to increase,

developing, analyzing, and validating control designs must be conducted in simulation prior to

application to the physical system. Due to the complexity of the systems and corresponding

models, modular, toolbox-based modeling frameworks are often developed. Examples in the

fields of building and vehicle energy management include the Thermosys™ [80] toolbox for

modeling air-conditioning and refrigeration systems, the ATTMO [81] toolbox for modeling

 97

aircraft vapor cycle systems, and the PowerFlow toolbox for holistic aircraft power system

modeling [82]. Each of these toolboxes consists of individual component models that can be

interconnected to form complete systems. This modularity allows for individual sizing and

validation of components and permits a wide range of system configurations and sizes to be

implemented in simulation.

To validate both modeling toolboxes and control approaches, experimental testbed

systems have been developed across a range of application areas. Examples include the vapor

compression refrigeration testbeds of [80] and [83], the hydraulic hybrid vehicle testbed of [84],

the aircraft fuel thermal management system testbed of [85], and the shipboard chilled water

distribution system testbed of [86].

As shown in previous Chapters, a graph-based approach to modeling power flow systems

can be particularly convenient for facilitating model-based control design. However, in order to

prove the efficacy of these control techniques for real-world implementation, it is essential to

demonstrate experimentally that graph-based modeling approaches can accurately capture the

dynamics of power flow systems.

6.3 Graph-based Modeling

6.3.1 Generic Graph Formulation

The generic graph-based modeling framework presented in Chapter 2 is extended in this

Chapters to capture the hydrodynamic and thermodynamic behavior of a thermal fluid system.

Thus, graph-based models in this Chapter are derived from application of either conservation of

mass or conservation of thermal energy. A graph derived from conservation of mass is referred

to as a “hydraulic” graph, while a graph derived from conservation of thermal energy is referred

to as a “thermal” graph. In both cases, each vertex has an associated dynamic state ix

representing an amount of stored mass or energy. Similarly, each edge has an assigned value jy

describing the rate of transfer of mass or energy (i.e., power flow) between adjacent vertices.

While previous Chapters refer to this transfer rate as power jP , for this Chapter the generic term

jy is used since a set of two interacting graphs will be developed where jy refers to mass flow

 98

rate in a hydraulic graph and thermal power in the thermal graph. For either graph, the dynamics

of each vertex satisfy the conservation equation

 ,
in

i i j j

e E e Ej i i
ut

j
o

C x y y

 (6.1)

where iC is the storage capacitance of the vertex. The transfer rate jy along edge je is a

function of the states
tail
jx and

head
jx of the incident vertices

tail
jv and

head
jv as well as an input

ju . Thus jy is given as

 (, ,).tail head
j j j j jy f x x u (6.2)

Based on the same formulation from Chapter 2, the dynamics of the states in system S

are

 : ,inCx My Dy S (6.3)

where Nin sy now takes the place of
inP and represents the disturbance source transfer rates

from the environment into the system and
Ne

jy y is

 , , ,ty F x x u (6.4)

where Nv
ix x are the states, Nt t t

ix x

 are the disturbance sink states,

Ne
ju u are the inputs, and , , , ,t tail head

j j j jF x x u f x x u

.

6.3.2 Hydraulic Graph Modeling

When conservation of mass is used as the continuity equation for a graph of a fluid flow

system, a model of its hydrodynamic relationships is obtained. A hydraulic graph is denoted as

m , with corresponding system mS and the superscript m denoting conservation of mass.

States of the hydraulic graph's vertices are pressures [], [1,]i vp p i N m
, while the transfer rates

along its edges are mass flow rates [], [1,]j em m j N m
. For this Chapter, all inputs to edges of

 99

the graph ium are actuator effort in units of % duty cycle of a pulse width modulation (PWM)

signal. It is assumed that no fluid is added to or drained from to the system, so 0s tN N m m .

Following from (6.3), the dynamics of the nonlinear hydraulic graph-based model are

 : ,C p M m m m m
S (6.5)

where ([])iC diag Cm m is the matrix of hydraulic capacitances of the vertices. The mass flow

rate jm along je is a function of the pressure differential
tail head
j jp p between the incident

vertices
tail
jv ,

head
jv and the state of the actuator jum

. Therefore, following from (6.2),

 (,).tail head
j j j j jm f p p u m m

 (6.6)

6.3.3 Thermal Graph Modeling

When conservation of thermal energy is used as the continuity equation for a graph of a

fluid flow system, a model of its thermodynamic relationships is obtained. A thermal energy

graph is denoted as e , with corresponding system eS and the superscript e denoting

conservation of energy. The states of the thermal graph's vertices are temperatures

[], [1,]i vT T i N e , while the transfer rates along its edges are thermal power flows

[], [1,]j eP P j N e
. All inputs to edges of the graph are mass flow rates [], [1,]j em m j N e e e

.

Following from (6.3), the dynamics of the nonlinear thermal graph-based model are

 : ,inC MT P D P e e e e
S (6.7)

where ([])iC diag Ce e
 is the matrix of thermal capacitances of the vertices and

inP is the

vector of power flows along the source edges of the graph. The power flow jP along je is a

function of the temperatures
tail
jT ,

head
jT of the incident vertices

tail
jv ,

head
jv and the mass flow

rate associated with the edge jme
. Therefore, following from (6.2),

 ,(,).tail head
j j j j jP f T T m e e

 (6.8)

 100

6.3.4 Multi-graph System Representation

Many physical components and systems are governed by both conservation of mass and

conservation of thermal energy. Therefore, they can be represented by both a hydraulic graph

m with corresponding system mS as in (6.5) and a thermal energy graph e with

corresponding system eS as in (6.7). The coupling between the hydraulic and thermal graphs is

limited to a unidirectional influence of mass dynamics on the thermal energy dynamics.

Mass flow rates are calculated in the hydraulic graph as its transfer rates m . A subset of

m are the edge inputs me to the thermal graph, affecting the power flows along the thermal

graph’s edges. An example of this interconnection of the hydraulic and thermal graphs is shown

in Fig. 6.1. There may also be mass flow rates affecting the power flows that are not calculated

within the hydraulic graph. For example, this could include flow rates on the secondary side of

heat exchangers by which heat is transferred to and from neighboring systems. These flow rates

are denoted by [], [1,]ext ext
i extm

m m i N and treated as disturbances to the thermal model.

Figure 6.1 Sample interconnection of thermal (top) and hydraulic (middle) graphs, with

actuator dynamics (bottom) affecting the hydraulic edge inputs.

 101

The matrix
()

1

N N Ne e extmZ

e m

 is defined as a mapping from the mass flow rates m

and extm to the input mass flow rates me , such that

 1 .
ext

m
m Z

m

e (6.9)

Let pN m
 be the number of hydraulic actuators in the system. To account for dynamics

including rate limits and time delays between each actuator command , [1,]i pv i Nm m
 and the

actual actuator state ium which affects the hydraulic graph, each ium is paired with a single-

input-single-output (SISO) system i
p

S as shown in Fig. 6.1. Each i
p

S models the state of the thi

actuator as a function of its commanded value ivm .

For this chapter, all actuators are pumps with states and inputs both in units of % duty

cycle of PWM. The actuator dynamic of each pump is modeled as a first-order response with

time constant i
p

 and delay 0i
p

. This dynamic can be expressed as a transfer function by

 () .: ()
1

si

i ii

i

e
u s v s

s

p

p m m

p
S (6.10)

6.4 Conservation-based Modeling

The generic graph-based modeling framework presented in the previous Section can be

used to capture the dynamics of a wide variety of thermal fluid systems that consist of a

heterogeneous mix of components. Often it is useful to model components individually and then

combine the individual component models to build up an entire system model.

Graph-based modeling relies on the assumption of lumped parameters. For example, the

mass stored in a fluid volume is captured by a single representative pressure while the thermal

energy stored in a thermal mass is captured by a single representative temperature. The first step

to modeling a component is to identify the capacitive elements within the component and

corresponding state values that represent the stored quantities. It is recommended that each

 102

component be represented with as few vertices as necessary to capture the relevant dynamics. If

additional fidelity is needed, the component model can easily be further discretized with

additional vertices and states. Once the vertices are identified, it is often a simple matter to

determine the possible paths by which mass or energy can enter or exit that storage element and

to represent these paths as edges. In order to keep models simple, it is suggested that only

dominant power flows are represented as edges. If, during validation of the graph, it becomes

apparent that a significant power flow was omitted from the graph, such as heat loss to ambient,

edges can easily be added to improve the accuracy of the model.

For demonstration purposes, the remainder of this Section develops a set of models for

components often found in an experimental thermal fluid systems to be presented in Section 6.6.

These components include a fluid reservoir, a flow split/junction, a pump, a pipe, a cold plate

heat exchanger, and a liquid-to-liquid brazed plate heat exchanger. Fig. 6.2 shows the mass

conservation and thermal energy conservation graphs for each component. Dashed lines,

indicating disturbances to each component, consist of variables determined by neighboring

components. For example, the reservoir and flow split/junction only calculate their own pressure

based on mass flow rates determined by neighboring components. However, the pump and heat

exchangers calculate their own outlet pressure and inlet mass flow rate based on the upstream

pressure and downstream mass flow rate. The following details the modeling of these

components based on their graph frameworks from Fig. 6.2.

6.4.1 Mass Conservation

All pressure dynamics are derived from the mass conservation equation 1 2M m m ,

where M is the rate-of-change of fluid mass stored in the component and 1m and 2m are the

total flow rates into and out of the component. For components with a fixed volume V , the

change in mass stored in a component is based on the change in density of the fluid as a

function of pressure p . Thus M V V p p . Noting that the change in density with

pressure is based on the bulk modulus of the fluid E , where p E , the mass

conservation equation provides a dynamic equation for pressure within the component, where

 103

Figure 6.2 Hydraulic and thermal graphs for individual components.

 1 2.V p m m
E

 (6.11)

Currently, the only component without a fixed volume is the reservoir. The reservoir has

a constant cross sectional area ,c rA with a liquid height rh . The top of the reservoir is subject to

ambient air pressure ambp . Fluid flows into and out of the reservoir from the bottom with flow

Brazed Plate

Heat

Exchanger

Thermal GraphsHydraulic Graphs

Cold Plate

Heat

Exchanger

Pipe

Pump

Split/

Junction

Reservoir

(a)

(b)

 1,acpT1,a 2,acpTa

 1,bcpT1,b 2,bcpTb

hbAs,b(Tb-Tw)

haAs,a(Tw-Ta)

T1

 1cpT1 2cpT

Q

T

T1 T
 1cpT1 2cpT

T1 T
 1cpT1 2cpT

T

 1,1cpT1,1

 1,2cpT1,2 2,2cpT

 2,1cpT

T1 T
 1cpT1 2cpT 1 2

p

p

 1,1

 1,2 2,2

 2,1

p1

 1 2
p

p1

 1 2
p

p1

 1
p2

p1

 1 2
p

 1,b 2,bpb

 1,a 2,a
pa

T1,b Tb

Ta

Tw

p1,a

p1,b

T1,a

T1,2

T1,1

Tw

hAs(Tw-T)

 104

rates 1m and 2m . The mass stored in the reservoir rM changes as a function of these flow rates:

1 2rM m m . This dynamic is expressed in terms of the pressure rp at the bottom of the

reservoir using the relationship between mass and liquid height, ,r c r rM A h , and the

relationship for static pressure in a liquid, r amb rp p gh . The resulting pressure dynamic is

 1 2 .c rA p g m m (6.12)

The flow split/junction has n inlets and m outlets and thus when using (6.11) the inlet

and outlet flow rates are calculated as 1 1,1

n
ii

m m

 and 2 2,1

n
ii

m m

 .

The mass flow rates through pipes and heat exchangers are based on the pressure drop

across the component 1p p p and the height difference between the inlet and outlet flow

h . Fluid flows through a cross sectional area of cA , based on tube diameter D , for a length .L

Major losses are determined based on the friction factor f and minor losses are modeled using

the a minor loss coefficient LK . Pipes may include the pressure drop effects of various sensors

via this minor loss coefficient. With s sensors along the pipe the total minor loss coefficient is

1

spipe i
L LL i

K K K

 . The resulting equation for the mass flow rate through a pipe or heat

exchanger is

 12

.c

L

p p g h
m A

L
f K

D

 (6.13)

Note that Fig. 6.2 shows two forms of pipes. Pipe version (a) is the standard component

that calculates a dynamic outlet pressure p and the inlet mass flow rate 1m . Pipe version (b)

only calculates a mass flow rate m between two pressures 1p and 2p , which are determined by

neighboring components. Version (b) of the pipe is used at the inlet to the reservoir and flow

split/junction, since these components do not calculate their own inlet mass flow rates.

For the brazed plate heat exchangers, there are cN channels for each fluid, the width of

each plate is W , and the spacing between plates is b . Thus when using (6.13), c cA N bW is

 105

the cross sectional area of a single channel multiplied by the number of channels and

 4 2 2D bW b W is the hydraulic diameter of a single channel.

The mass flow rate calculation for the pump is a function of the pressure differential

across the pump 1pp p p and the pump speed . The mass flow rate is c mm A u , where

mu is the mean fluid velocity. From conservation of mechanical energy the fluid velocity is

 2m pu g H p g , where ,pH H p is the pump head. Thus the mass flow rate

through the pump is

 2 .
p

c

p
m A g H

g

 (6.14)

Fig. 6.3 shows an example of a experimentally obtained pump head map with

1 2 3pH k k p k .

Figure 6.3 Example pump head map.

 106

6.4.2 Thermal Energy Conservation

All temperature dynamics are derived from the thermal energy conservation equation

1 2stE P P , where st pE Mc T is the stored thermal energy and 1P and 2P are the rate of

thermal energy entering or exiting the storage element. In general, st p pE Mc T Mc T , which

accounts for the change in thermal energy associated with the change of mass M . The first term

is important to consider for components, such as the reservoir, which may undergo a significant

change in mass. However, for most components, st p pE Mc T Vc T . For the reservoir, pump,

and pipes, the power flow due to fluid flow into the component 1P is 1 1 1pP m c T and the power

flow out of the component 2P is 2 2 pP m c T . The lumped temperature represents the fluid

temperature at the outlet of the component with the dynamic

 1 1 2 .p p pVc T m c T m c T (6.15)

For the flow split/junction, the temperature dynamic is similar with

 1, 1, 2,

1 1

.
n m

p i p i i p

i i

Vc T m c T m c T

 (6.16)

The cold plate heat exchanger has an additional temperature dynamic capturing the

thermal capacitance of the wall. With a heat load of Q , the cold plate wall temperature dynamic

is

 , ,w p w w s wM c T Q hA T T (6.17)

where h is the heat transfer coefficient and sA is the convective surface area. The heat transfer

coefficient is calculated based on a Nusselt number, Nu hD k , of 3.66Nu for laminar flow

or the Gnielinski equation [87]

 1 2 2 3

8 Re 1000 Pr
,

1 12.7 8 Pr 1

f
Nu

f

 (6.18)

 107

for turbulent flow. With the additional convective heat flow, the fluid outlet temperature

dynamic for the cold plate is

 1 1 2 .p p s w pVc T m c T hA T T m c T (6.19)

Finally, the brazed plate heat exchanger is modeled similarly to the cold plate heat

exchanger where the heat load Q is replaced by secondary fluid flow. The plates of the heat

exchanger are assumed to be at a uniform lumped temperature wT with the dynamic

 , , , ,w p w w b s b b w a s a w aM c T h A T T h A T T (6.20)

where subscripts a and b denote the primary and secondary fluids channels, wM is the mass of

a single plate, and sA is the convective surface area for a single channel. For the plate heat

exchangers, the heat transfer coefficient is based on the empirical results from [88], where

 0.766 0.3330.277Re Pr .Nu (6.21)

Note that all components are assumed to be adiabatic and do not exchange heat with the

surroundings. If this heat loss needs to be considered, the component graphs in Fig. 6.2 could

easily be modified with an additional edge directed to a new vertex with a corresponding state

equal to the ambient air temperature.

In general, the equations used to represent the hydraulic and thermodynamic behaviors in

this Section have a nonlinear form but satisfy the generic conservation and power flow

relationships from (6.1) and (6.2). For control design in particular, it is often useful to use a

linear representation of the system dynamics. One of the key benefits of a graph-based approach

is that this linearization can be performed for each power flow relationship individually as

discussed in the following Section.

 108

6.5 Linearization and Discretization

6.5.1 Hydraulic Graph Linearization

To generate a linear hydraulic graph model for use in control design, the generic mass

flow rate relationship of (6.6) is linearized about an equilibrium operating condition using a first-

order Taylor Series, giving

 (,)tail
j j j j j

head
jm a p p b u m m m

 (6.22)

where, for a generic signal x t , 0:x t x t x and 0x is the equilibrium value of x about

which the linearization is taken. The dynamics of the linearized hydraulic model are then given

by

 ,p A p B u m m m (6.23)

where

1

,
T

jA C M diag a M

m m m m m (6.24)

1

,jB C M diag b

m m m m (6.25)

and M m represents the columns of M m
 corresponding to edges with associated actuators and

jbm
 are the input coefficients for edges with actuators.

The output equation of the linearized hydraulic model relating pressures and actuator

efforts to mass flow rates is given by

 ,m C p D u m m m (6.26)

where

 ,
T

jC diag a M

m m m (6.27)

 , ,
Ne

j k

N pD d

m m
m m

 (6.28)

 109

and

 ,

if is associated with actuator
.

0 else

j j
j k

b e k
d

m
m (6.29)

6.5.2 Hydraulic Graph Discretization

The dynamics of the hydraulic system evolve relatively quickly, on the order of fractions

of seconds. Therefore, care must be taken to preserve stability and maintain sufficient numerical

tolerances when discretizing the continuous model to relatively slow update rates, for example

on the order of 1 Hz. Furthermore, conservation of mass dictates that Am
 is singular, which

violates the assumptions of several common discretization approaches. These issues motivate the

multistep process described below for obtaining discrete models of the hydraulic system. The

linear hydraulic model is first discretized at a relatively fast update rate on the order of 10,000

Hz using a zero-order hold. This yields the discrete dynamic model

 , ,(1) () (),d fast d fastp k A p k B u k m m m
 (6.30)

with state matrices given by

 , exp ,d fast fastA A t m m m (6.31)

 , 0
exp ,

t
fast

d fastB A d B

m
m m m (6.32)

where fastt m
 is the time step between consecutive updates.

For the component size and configuration of the system to be implemented in this

Chapter, 10,000 Hz has been found to be a sufficiently fast update rate to preserve stability

properties of the continuous system. However, as demonstrated in Chapter 7, this is orders of

magnitude faster than what is required to control the hydrodynamics of such a system. Therefore,

a hydraulic model at a slower update rate is desired. To better capture the continuous behavior of

the actuators at a slower time step, such a model is derived by downsampling the “fast” discrete

model using a first-order hold rather than a zero-order hold. This essentially preserves

knowledge of the rate limit of the actuator effort, which under a first-order hold is assumed to

 110

ramp between time steps. By comparison, a zero-order hold would assume stepped actuator

inputs with an instantaneous rate of change.

The discrete model used for control has a time step of t m given by

 s.t. 1 and .ds fast ds dst N t N N m m m m m
 (6.33)

The use of a first-order hold in performing this downsampling yields the discrete dynamic model

 ,1 ,21 1 ,d d dp k A p k B u k B u k m m m m m (6.34)

with state space matrices given by

 , ,
N

ds
d d fastA A

m
m m (6.35)

11

,1 , ,0
1 ,

N iN dsds
d d fast d fasti

ds

i
B A B

N

mm
m m m

m
 (6.36)

11

,2 , ,1
.

N iN dsds
d d fast d fasti

B A B

mm
m m m (6.37)

Because (6.34) depends on knowledge of 1u k m to compute 1p k , (6.34) is clearly a

non-causal system. However, as shown in Chapter 7, this does not present a problem when using

this model for an MPC controller.

6.5.3 Thermal Graph Linearization

 To generate a linear thermal graph model, the power flow relationship of (6.8) is

linearized about an equilibrium operating condition using a first-order Taylor Series, giving

 .tail he
j j j

ad
jj jjbP cTa T m e e e e

 (6.38)

The dynamics of the linearized thermal model are then given by

 1 2 ,in tT T B m V P V TA e e e e e
 (6.39)

where

 111

1

, ,
T

a bC M MA

 e e e e (6.40)

1

,jC diagB c

e e e (6.41)

1

1 ,C DV

e e e (6.42)

1

2 , ,
T

a bC M MV

 e e e e (6.43)

and

, ,

N Nv t

a b i j

Ne
M m

e e e
e is a weighted incidence matrix for the thermal graph with

 ,

if is the tail of

if is the head of .

0 else

j i j

i j j i j

a v e

m b v e

e

e (6.44)

6.5.4 Thermal Graph Discretization

The dynamics of the thermal system evolve much slower than those of the hydraulic

system, on the order of tens of seconds. Therefore, the use of a zero-order hold is sufficient for

generating a discrete model at the rate desired for control. This yields the discrete dynamic

model

 ,1 ,21 ,in t
d d d dT k T k B m k V P k V T kA e e e e e (6.45)

with state space matrices given by

 exp ,dA A t e e e (6.46)

1

,d dB A A I B

 e e e e
 (6.47)

1

,1 1 ,d dV A A I V

 e e e e
 (6.48)

 112

1

,2 2 ,d dV A A I V

 e e e e (6.49)

where t e is the time step between consecutive updates.

6.5.5 Actuator Dynamics

The continuous-time model of the actuator dynamics given as a transfer function in (6.10)

can be equivalently expressed as

 ,i i ii i iu t a u t b v t
p p pm m m (6.50)

where

1 1

, .i i

i i

a b

p p

p p
 (6.51)

The update rate of the discrete actuator model t p is defined such that the delay i
p

 is the

integer ,ds iN
p

 multiple of t p . The discrete model is then given by

 , , ,1 ,i i id i d i ds iu k a u k b v k N
p p pm m m (6.52)

where

 , ,exp , 1 .i i id i d ia a t b a
p p p p p (6.53)

6.6 Experimental System Description

The following experimental system is used to demonstrate the applicability and validity

of the graph-based modeling framework presented in the previous Sections. This experimental

testbed was developed to emulate features of power flow systems while being rapidly

reconfigurable to allow for numerous system architectures. Currently, the experimental system

focuses on the thermal and hydrodynamic energy domains, with future work concentrating on

expansion to the electrical domain. This experimental system is used to demonstrate the

implementation of a hierarchical model predictive control framework in Chapter 7.

 113

6.6.1 Overall System

Fig. 6.4 shows the testbed with a sample system configuration along with the

corresponding system schematic. The slatted design of the testbed allows components to be

placed in arbitrary horizontal or vertical positions, similar to a breadboard for electrical circuits.

The working fluid is an equal parts mixture of propylene glycol and water. Components use

standard G1/4 threaded barbs and are connected via flexible tubing. Sensors and pumps are

connected to a National Instruments CompactDAQ via custom USB plug interfaces.

6.6.2 Individual Components

Fig. 6.5 presents images and specifications of the components currently included in the

testbed.

Centrifugal pumps are the primary fluid movers in the system. Speed is controlled via a

PWM duty cycle with <20% being a constant 1300RPM, 65% and above being 4500RPM, and a

linear trend between. Peak power consumption of the pumps is 20W with a peak efficiency of

35%.

Liquid-to-liquid brazed plate heat exchangers (HX) allow for the transfer of heat among

various fluid loops in either a parallel-flow or counter-flow configuration.

The cold plate heat exchanger consists of two 47Ω resistive heater wired in parallel,

capable of 2kW peak power output, mounted to an aluminum cold plate that has copper tubing

passing through. The heater is connected to a solid-state relay which allows for 0-100% power

output using the 208VAC wall power supply.

The reservoir acts as a thermal storage element. A liquid level sensor inside the reservoir

allows for the calculation of the liquid mass and therefore thermal capacitance of the reservoir.

A 1.5HP (1.12kW) industrial chiller acts as a heat sink (e.g. a vapor compression

system). With variable temperature control from -10oC to 70oC, the chiller can emulate a wide

range of source and sink temperatures.

Temperature and pressure sensors utilize G1/4 threads and integrate seamlessly into the

tube junctions. As such, limited pressure drops are incurred due to the inclusion of these sensors

within the system. Similarly, mass flow sensors use G1/4 threads to attach in line with pipes but

the paddlewheel-based design does introduce significant pressure drops.

 114

(a) Experimental thermal fluid system.

(b) System Schematic (red sensors plotted for model validation in Section 6.8)

Figure 6.4 Candidate thermal power architecture for simulation and experimental

validation.

F

F

F

F

F

F

A

B

#4

#2

#2

#3

#3

Primary Loop

Secondary Loop

L

#2

#1

#2

L

#1

#1

#1

#4

#5

Pump

Cold plate HX

Brazed Plate HX

Reservoir

Fill/Drain Valve

To chiller inlet

L

F

P

T

Liquid level sensor

Flow rate sensor

Fluid temperature sensor

Surface temperature sensor

Pressure sensor

From chiller outletA B

S

F P

F

P

F

P

F

P

F

P

F P

P

S

S

S

S

S

S

T

T

T

T

TT

T

T

T

T

 115

Figure 6.5 Individual components and specification with a 6” ruler for scale.

6.7 Graph-based System Representation

To represent an entire system as a graph, the individual component models from Fig. 6.2

in Section 6.4 are simply connected to reflect the given system architecture. The example system

configuration shown in Fig. 6.4 is modeled using the graph-based framework with the resulting

hydraulic and thermal energy graphs shown in Fig. 6.6. The following Subsections demonstrate

how the conservation-based modeling equations from Section 6.4 are assembled into the generic

graph-based models from Section 6.3 for the example experimental system configuration.

Component Number Details

(a) Pump 8

 Swiftech MCP35X

 12VDC, 1.5A max, PWM ctrl.

 4.4 m max head

 17.5 LPM max flow

(b) Brazed
Plate HX

4

 Koolance HXP-193

 12 plates

 4.0 kW @ 5 LPM and 20oC inlet

temp. diff.

(c) Cold

Plate HX
4

 Ohmite CP4 with TAP2000 thick

film resistor

 0.018 oC/W thermal resistance

 2000W

(d) Pipe -

 Koolance HOS-13CL

 Clear PVC

 13mm x 16mm

(e) Reservoir 4

 Koolance 80x240mm

 Acrylic

 8” eTape Liquid Level Sensor

(f) Chiller 1

 Polyscience 6000 Series

 Up to 2900W @ 20oC

 -10oC to +70oC

(g) Temp.
Sensor

16
 Koolance SEN-AP008B

 10K ohm thermistor

(h) Pressure.
Sensor

7
 Measurement Specialties US300

 0 – 100kPa gauge

(i) Flow Rate
Sensor

8
 Aqua Computer High Flow

 0.5 – 25 LPM

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(i)

 116

Figure 6.6 Hydraulic and thermal graphs for the example experimental system configuration.

1

1

2

1

21

3 4

1a

2 2

1b

1

3 8

9

10

4

5

11

12

13

2

414

3

18 2a

5 6

P1
in

1w

1

1

2

1

21

3 4

1a
Pipe 5 Pipe 6

7

19

2w

2b
P5

in

15

16

17

P2
in

2w

P3
in

3w

P4
in

4w

2 2

1b

1

3 8

9

10

4

5

11

12

13

2

414

3

12 2a
Pipe 15

Pipe 16
Pipe 17

Pipe 7

Pipe 19

1w

e

m

Primary Loop

Secondary Loop

Secondary Loop

Primary Loop

Reservoir

Split/Junction

Pump

Pipe

Cold Plate HX

Brazed Plate HX

Inlet Power

Sink

 117

6.7.1 Mass Conservation System

Since the primary and secondary flow loops do not exchange mass, the hydraulic graph in

Fig. 6.6 has two independent components. The dynamics of this system follow from (6.5), where

iC V Em for all vertices except the reservoir where i cC A gm . The mass flow rate

function ,tail head
j j j j jm f p p u m m equals (6.13) for the pipes and heat exchangers and (6.14)

for the pumps. To simplify the graph equations, a constant fluid density of 31041kg m is

used. For the linear graph results in the following Section, (6.13) and (6.14) are linearized about

a nominal operating condition (50% pump PWM duty cycles).

6.7.2 Thermal Energy Conservation System

Fig. 6.6 also shows the thermal graph for the experimental system. The five inlet power

flows consist of the four heat loads to the cold plates and the fluid flow from the chiller entering

the secondary side of heat exchanger 2. Thus in (6.7),

 1 2 3 4 2, 2, ,
Tin

b p bP Q Q Q Q m c T (6.54)

where iQ is the heat load to the thi cold plate heat exchanger and 2,bm is the secondary fluid

flow rates through heat exchanger 2 with corresponding inlet temperature 2,bT set by the chiller.

The thermal capacitances i pC Vce
 for all fluid temperatures and ,i w p wC M ce

 for all heat

exchanger wall temperatures. The thermal power flow function , ,tail head
j j j j jP f T T m e e equals

tail
j j p jP m c T e

 for all thermal power flow due to fluid flow and ,
tail head

j j s j j jP h A T T for

convective thermal power flows in the heat exchangers. To simplify the graph system equations,

a constant fluid specific heat of 3500pc J kg K is used. Additionally, to reduce the

complexity of the power flow equations, the heat transfer correlation from (6.18) is

approximated, with (6.17) and (6.19) using 1 2h mT , where 1 2000 and 2 0 for the

cold plate heat exchanger.

 118

Similarly, the heat transfer correlation from (6.21) for the brazed plate heat exchanger is

approximated, and (6.20) uses 1 2572 and 2 1136 . While these approximations are used

successfully within the range of operating conditions seen in the current experimental systems,

the nonlinear (6.18) and (6.21) may be used over wider ranges of conditions.

6.8 Model Validation

In this Section, the graph-based modeling approach of Section 6.7 is validated by

comparison of experimental data from the testbed of Section 6.6 to the linear graph-based

models, using the configuration shown in Fig. 6.4. This linear model is used for hierarchical

control in Chapter 7. Separate experimental tests are used to validate the hydrodynamic and

thermodynamic domains so that each is validated under excitation on an appropriate timescale

(i.e., the hydrodynamics are validated using rapid steps in pump speed, while the significantly

slower thermodynamics are validated with slower steps in pump speed and heat load).

6.8.1 Hydrodynamic Validation

Fig. 6.7 shows the pump input sequence used to validate the hydrodynamics of the

models, where the pump numbering follows from that of Fig. 6.4. Fig. 6.8 shows a subset of the

measured outputs from the testbed (labeled as “Measured”), as well as the graph-based model

(labeled as “Linear Graph Model”). The pressures at the outlet of pumps 1, 2, and 4 are shown

along with the pressure at the inlet to the primary side of heat exchanger 2 and the mass flow

rates at the outlet of pumps 1 and 4. From Fig. 6.8, the linear graph model captures some

pressures very accurately, such as the pressures for pumps 1 and 4, while fails to accurately

model other pressures, such as the pressure for pump 2. This model inaccuracy is likely due to

the nonlinearity of the pump equation (6.14) and the pressure drop equation (6.13) for flow

through pipes and heat exchangers. Additional fine tuning of the minor and major loss

coefficients would also improve model accuracy. However, as will be shown in Chapter 7, a

hierarchical controller using this linear graph model is capable of effectively controlling the

nonlinear experimental system.

 119

Figure 6.7 Pump PWM duty cycle inputs for hydrodynamic validation.

Figure 6.8 Selected outputs for hydrodynamic validation of experimental data with linear

graph-based models.

 120

6.8.2 Thermal Validation

Fig. 6.9 shows a sequence of pump inputs and heat loads to the cold plate walls used to

validate the thermodynamics of the models. From Fig. 6.10, one can confirm that general

temperature behaviors at multiple locations in the experimental system are captured by the linear

model. The model error from the hydraulic graph in the previous Subsection also affects the

accuracy of this model since the mass flow rates modeled by the hydraulic graph are inputs to the

thermal graph. Discrepancies between the graph-based models and the experimental data are

likely due to the lumped capacitance approach used to represent a component with spatially

varying temperature, such as the wall of a cold plate heat exchanger, by a single vertex with a

single temperature. While these models could be improved, at the cost of increased complexity,

the accuracy of the models is sufficient for the hierarchical control in Chapter 7.

Figure 6.9 Pump and heater inputs for thermodynamic validation.

 121

Figure 6.10 Selected temperatures for thermodynamic validation of experimental data with

linear graph-based models.

6.9 Chapter Summary

The results in this Chapter demonstrate the capabilities of a graph-based modeling

framework to capture the hydrodynamic and thermodynamic behavior of an experimental

thermal fluid system. Conceptualizing and modeling a system based on the underlying structure

of mass and energy storage and transport provides numerous benefits. First, when viewed as a

graph, systems of different energy domains look and behave identically. Energy, and/or mass, is

transported along edges and stored at the vertices, regardless of whether the vertex state

 122

represents a temperature, a pressure, or a voltage. This unifying framework natively captures the

interactions between energy domains and thus facilitates system-wide design, analysis, and

control.

The second benefit of a graph-based approach comes from the modularity. Vertices and

edges are all modeled individually. This allows for rapid development of complex systems with

many vertices and edges through the combination of components modeled individually. From

this modularity, alternative system configurations can be rapidly evaluated through the

rearrangement of components or the addition/subtraction of various edges and vertices. Along

these lines, if the overall model validity is not sufficient for the intended purposes of the model,

additional fidelity can be easily added through the discretization of components captured by

additional vertices and edges in the graph.

An additional benefit comes from the flexibility of a graph-based modeling framework.

The majority of the system specific behaviors are captured by the edge transfer rate equation

(6.2). The general, nonlinear form of this equation allows for a wide variety of relationships to be

captured within a single framework. While the general form may be nonlinear, (6.2) may be

easily restricted to specific forms, such as input affine, bilinear, or linear, to best suit the needs of

the modeling and control efforts. The following Chapter demonstrates the ability to directly

utilize the hydraulic and thermal graphs developed in this Chapter to develop a hierarchical MPC

controller for the experimental system from Fig. 6.4.

 123

Chapter 7

Hierarchical Control of a Thermal Fluid System

7.1 Motivation

Chapter 2 demonstrated how a graph-based modeling framework can capture the storage

and routing of energy throughout out the complex systems found in vehicles. Chapter 6 showed

how an experimental thermal fluid system can be represented as a pair of interacting hydraulic

and thermal graphs, which capture the conservation of mass and conservation of thermal energy

that govern the complex nonlinear dynamics of a real physical system. This Chapter

demonstrates the development of a hierarchical control framework for managing the thermal and

hydraulic states of a system by directly accounting for the coupling between these two domains

based on the generic modeling and control procedure presented in Chapters 2 and 3. The control

hierarchy in this Chapter represents the lower-level Subsystem, Component, and Physical Level

controllers from Fig. 3.1. It is intended that the control hierarchy from this Chapter could be

readily integrated with the generic hierarchical control formulation from Chapter 3, which would

form the upper-level controllers from Fig. 3.1, to create a highly functional controller for more

complex, multiple energy domain systems. While the following control formulation does not

benefit from the theoretical stability and feasibility guarantees from Chapters 4 and 5, the future

research directions in presented in Chapter 8 are intended to help extend the applicability of

these theories to physical systems with more complex dynamics.

 124

7.2 Hierarchical Control Framework

The proposed control framework consists of three layers, arranged in the hierarchy shown

in Fig. 7.1. The thermal layer optimizes the thermal performance of the system by selecting

references for its mass flow rates refm . In doing so, the thermal layer leverages available

preview of upcoming thermal disturbances (i.e., power flows along source edges and states of

sink vertices of the thermal graph). The hydraulic layer controls the system mass flow rates to

track refm by selecting references for the actuator states refum
. In the actuator layer, a set of pN m

decoupled SISO controllers track refum
 by commanding the actuator inputs vm .

Figure 7.1 Three-level graph-based control hierarchy and signals.

7.2.1 Thermal Control Layer

The thermal control layer leverages available preview of upcoming thermal disturbances

in selecting references for system mass flow rates refm that optimize the thermal performance of

Hydraulic LayerPLANT

Actuator Commands, vm

Thermal Layer

Mass Flow Rate
References,

Actuator State
References, um

Thermal

Disturbances

CONTROLLER

Thermal States, T

Actuator
States, um

Hydraulic States, p

Pump 1 Pump Np
...

Actuator Layer

0.1 Hz

1 Hz

4 Hz

ref

ref

m

 125

the system over a prediction horizon. For this Chapter, “optimal thermal performance” primarily

involves controlling temperature states of the system , [1,]i vT i N e such that ,i i iT T T i ,

where iT and iT are lower and upper bounds, respectively, on the thi temperature. A

temperature regulation objective is also included to maintain critical components near the desired

operating temperature. A final objective is minimizing the mass flow rate references, which

reduces the actuator effort required of the system. Additional constraints are included in the

thermal control layer to ensure that refm is an achievable reference to be tracked by the

hydraulic control layer by the system. The MPC controller at the thermal control layer solves the

constrained quadratic program

1

2 2 2
2 2 2

, 0

min () () ()()
N

h

s des m ref
sf

r
m kre

s k T k T m k

e

e e e e

e
‖ ‖ ‖ ‖ ‖ ‖ (7.1a)

. t .s ,1 ,21 ,in t
d d ref d preview d previewT k T k B m k V P k V T kA e e e e

 (7.1b)

 () () (), [1,],i i i i i vT s k T k T s k i N e e e (7.1c)

 () 0, [1,],i vs k i N e e
 (7.1d)

 , (), [1,],ref i em m k i N m
 (7.1e)

 () , [1,],i i i pu u k u i N m m m m
 (7.1f)

 , ,0 () () (),d fast d fastA I p k B u k m m m
 (7.1g)

 () () (),refm k C p k D u k m m m
 (7.1h)

for 0, 1hk N

e .

In the above MPC optimization problem, hN e
 is the prediction horizon of the thermal

control layer. The cost function (7.1a) minimizes the thermal slack variable
Nv

is s

e
e e

 126

with weighting s
e , the desired state tracking error desT T with weighting r

e , and the mass

flow rate references refm with weighting m
e . The discretized dynamics from the thermal graph

model are imposed by (7.1b). The temperature states iT are constrained by (7.1c) where the slack

variables are required to be non-negative by (7.1d). All mass flow rates are required to be greater

than m by (7.1e), where m is a small positive number to prevent reverse flow conditions.

Constraints (7.1f)-(7.1h) ensure that the set of reference values refm are simultaneously

achievable by m of the hydraulic graph model at steady-state. This represents a key difference

between the graph-based control designs in previous Chapters in which generic inputs are

individually constrained as ,i i iu iu u . In hydraulic fluid systems with flow splits and

junctions, there exists a high degree of coupling among pressure and mass flow rates through

different flow paths. This means that constraining individual mass flow rates by constants can

either result in over-conservative bounds or result combinations of mass flow references that are

not simultaneously achievable by the system. The use of the steady-state hydraulic model in

(7.1g) greatly reduces this conservatism.

The upper and lower bound constraints on the actuator inputs are enforced by (7.1f).

Using the steady-state hydraulic model, (7.1g) constraints the relationship between system

pressures and actuator inputs that are used to calculate the mass flow rates in (7.1h). As will be

shown in Section 7.3, due to the significant timescale separation between the thermodynamics

and hydrodynamics, there is negligible error incurred by using a steady-state hydraulic model to

make control decisions at the timescale of the thermal control layer.

7.2.1 Hydraulic Control Layer

The hydraulic control layer forces the system mass flow rates to track refm by selecting

references for the actuator states refum
. While (7.1f)-(7.1h) in the thermal control layer ensure that

refm is achievable at steady-state, the hydraulic control layer is responsible for managing the

transient behavior of the hydraulic states to closely track refm , to minimize the prediction error

of the thermal controller. Because the hydrodynamics evolve significantly faster than the

 127

thermodynamics, the hydraulic control layer has an order of magnitude faster update rate than

the thermal control layer.

References refm from the thermal control layer are not provided for a single instant in

time, but instead are provided for all steps over the thermal control layer's prediction horizon.

Using a zero-order hold between steps of the thermal horizon, these references are resampled and

truncated to match the update rate and prediction horizon of the hydraulic control layer, giving

,ref previewm . This allows the hydraulic layer to take preemptive action in minimizing tracking

errors, preparing for references anticipated of the future rather than only reacting to their current

values.

The MPC controller at the hydraulic control layer solves the constrained quadratic

program

1

2 2 2
2 2 , 2

, 0

min () () ()()
N

h

s ru mef ref preview
u s kref

s k u k m k m k

m

m m m m m m

m
‖ ‖ ‖ ‖ ‖ ‖ (7.2a)

. t .s ,1 ,21 1 ,d d ref d refp k A p k B u k B u k m m m m m
 (7.2b)

 ,refm k C p k D u k m m m
 (7.2c)

 () () (), [1,],i i i i i vs k p k p s k i Np m m m (7.2d)

 () 0, [1,],i vs k i N m m
 (7.2e)

 , () , [1,],i ref i i pu u k u i N m m m m
 (7.2f)

 ,(1) (2),ref ref lastu um m
 (7.2g)

for 0, 1hk N

m .

In the above MPC optimization problem, hN m
 is the prediction horizon of the hydraulic

control layer. The cost function (7.2a) minimizes the thermal slack variable
Nv

is s

m
m m

 128

with weighting s
m , the actuator state references refum

 with weighting u
m , and the mass flow

rate reference tracking error with weighting m
m . The discretized dynamics from the hydraulic

graph model are imposed by (7.2b) with mass flow rate related to pressure and actuator state

references through (7.2c). The pressure states ip are constrained by (7.2d) where the slack

variables are required to be non-negative by (7.2e). The upper and lower bound constraints on

the actuator inputs are enforced by (7.2f). Since (7.2b) is non-causal, (7.2g) constrains the

actuator state references at the current time step 1refum
 to be equal to the actuator state

references at the corresponding time in the previous time step , 2ref lastum
.

7.2.1 Actuator Control Layer

In the actuator control layer, a set of pN m
 decoupled SISO controllers track refum

 by

commanding the actuator inputs vm , accounting for the dynamics of the actuators.

Similar to refm from the thermal control layer as discussed previously, references refum

are not provided for a single instant in time, but instead are provided for all steps over the

hydraulic control layer's prediction horizon. Using a zero-order hold between steps of the

hydraulic horizon, these references are resampled and truncated to match the update rate and

prediction horizon of the actuator control layer, giving ,ref previewum
.

The thi MPC controller at the actuator control layer solves the constrained quadratic

program

1
,

2
, , 2

0,

1
,

2
, , 2

,

,

,

min ()

() (1)

N
h i

u i

dv i

i ref preview i
v kdelayed i

N
h i

delayed i delayed i

k N
ds i

u k u k

v k v k

p

p m m

m

p

p m m

p

‖ ‖

‖ ‖

 (7.3a)

. t .s ,, , ,1 , 0, 1 ,i i delayed id i d i h iu k a u k b v k k N

p p pm m m (7.3b)

 129

 , , ,() , [, 1],i delayed i i ds i h iu v k u k N N
p pm m m

 (7.3c)

 , , , ,,() (), 0, 1 .delayed i delayed last i ds i ds iv k v k N k N

p pm m (7.3d)

In the above MPC optimization problem, ,Nh i
p

 is the prediction horizon of the thi MPC

controller at the actuator control layer. The cost function (7.3a) minimizes the actuator state

reference tracking error with weighting ,u ip and the change in consecutive actuator inputs with

weighting ,dv ip
 over the portion of the prediction horizon for which ,delayed ivm

 is not fixed to

equal the actuator inputs , ,delayed last ivm
 determined at the previous iterations of the controller by

(7.3d). The discretized dynamics from the actuator model are imposed by (7.3b). The upper and

lower bound constraints on the actuator inputs are enforced by (7.3c).

7.3 Simulation Results

In this Section, the proposed hierarchical control framework is demonstrated in

simulation. The controller is provided with full state feedback of the temperatures, pressures, and

actuator states of the plant. The update rates, horizons, weightings, and constraints of the control

framework as described in the previous Section are parametrized as follows:

6 2 1

Thermal Layer: 10 , 10,

10 ,

1, ,

0.03 ,

10 , 10 ,

15 , 40 ,

20%, 1,65%, ,

h

s r m

o

p

i i

i i

v
o

t s N

T C i N

m kg s

u N

T C

iu

e e

e e e

e

m m m

 (7.4a)

0 4

Hydraulic Layer: 1 , 15,

10 , 0, 10 ,

50 , 200 ,

20%

1, ,

, 65%, 1, ,

h

s u m

i

i

v

i p

i i

t s N

p kPa p kPa

u

N

u i N

m m

m m m

m

m m m

 (7.3b)

 130

 0 0
, ,

Actuator Layer: 0.25 , 10,

10 , 10 ,

20%, 6

1,

5

,

1, .%,

h

u i dv p

pii

i i N

u i

t s N

u N

pp

p p m

m m m

 (7.3b)

Simulations are conducted in MATLAB/Simulink using the YALMIP toolbox [41] and

Gurobi optimization suite [42] to solve the constrained quadratic programs.

Fig. 7.2 shows the heat load inputs to cold plates 1-5 for the simulation example. These

loads serve as disturbances to the system. Upcoming loads are assumed to be known exactly by

the thermal control layer over the duration of its prediction horizon, equal to 100 ,ht N s e e . The

load profile consists of sequential steps of varying magnitude and duration in the heat load to

each cold plate.

Fig. 7.3 shows temperature states of the linear plant, including a selection of cold plate

wall temperatures in the top subplot and fluid temperatures in the bottom subplot. In advance of

the heat loads to cold plates 1 and 4, the thermal controller seeks to minimize temperature

constraint violation by strategically “precooling” the cold plate walls prior to the increase in

load. While this precooling helps to minimize the constraint violation, the loads are large enough

to cause constraint violations. The coupling between cold plates 2 and 3 is shown during the

increase in heat load to cold plate 3 between 300 and 400 seconds. Since these two cold plates

are in series, the controller increases the mass flow rate through both cold plates to prevent

constraint violation for cold plate 3. This increase in mass flow rate causes the temperature of

cold plate 2 to decrease.

Fig. 7.4 shows the resulting pressures, mass flow rates, and pump speed inputs.

Interestingly, the hierarchical controller chooses to reduce the speed of pump 1 during the

increase heat load to cold plate 4 between 500 and 600 seconds. This reduces the heat transfer

from the secondary loop to the primary loop, which helps minimize the constraint violation for

the cold plate 4 wall temperature.

Fig. 7.5 shows a closer view of a portion of the actuator effort for pump 5, and also

includes the references from the Hydraulic Control Layer and the commands issued by the

Actuator Control Layer. The commands are seen to lead the references, leveraging preview of

 131

upcoming references and accounting for the 1 second time delay in pump dynamics to minimize

the overall tracking error.

Figure 7.2 Thermal disturbances for the simulation example, consisting of step changes in

heat load to each cold plate (CP) heat exchanger.

Figure 7.3 States of the linear plant in the closed-loop simulation example, including cold

plate wall temperatures (top) and a selection of outlet fluid temperatures (bottom).

 132

Figure 7.4 Fluid pressures at the outlet of each pump and inlet to heat exchanger 2 (top),

mass flow rates at the outlet of each pump and inlet to heat exchanger 2 (middle), and

pump input signals (bottom).

 133

Figure 7.5 Close-up view of state signals for pump 5 showing the pump state reference from

the Hydraulic Control Layer, the commanded pump input by the Actuator Control Layer,

and the achieved pump state.

7.4 Experimental Results

The same hierarchical controller used to control a linear graph model of the system in the

previous Section is applied to the experimental system. The same controller parameters from

(7.4a-c) are used. A Kalman filter estimates the full set of states based on the subset of measured

pressures and temperature. Fig. 7.6 shows the measured heat load applied to each cold plate heat

exchanger based on the measured current and the measured resistance of the resistors from Fig.

6.5. Fig. 7.7 shows the measured temperatures corresponding to the temperatures from the linear

simulation presented in Fig. 7.3. There are some clear differences between the measured

experimental and simulated temperatures, most notably the wall temperature of cold plate 1. The

fact that this cold plate temperature increases significantly more in the closed-loop simulation

results than in the closed-loop experimental results is a product of the open-loop model error

seen in Fig. 6.10 from the previous Chapter, where the linear model predicts larger temperature

rises as a result of the increased heat load. This error is likely due to the approximated heat

transfer coefficients in the linear graph model used to capture the heat transfer between the cold

plate wall and the fluid flowing through the cold plate. The over-prediction of cold plate wall

temperatures in the linear model also results in differences in the control of pump 1, as seen by

comparing Fig. 7.8 with Fig. 7.4. In simulation, this pump is operated at its upper constraint in

simulation and at its lower constraint on the experimental system for most of the scenario.

 134

Figure 7.6 Measured heat load applied to each cold plate matching the disturbance profile

from Fig 7.2.

Figure 7.7 Measured temperatures from closed-loop control of the experimental system,

including cold plate wall temperatures (top) and a selection of outlet fluid temperatures

(bottom).

 135

Despite these difference, the linear model-based hierarchical controller is able to

effectively controller the nonlinear experimental system. As with the simulated results in the

previous Section, the thermal controller seeks to minimize temperature constraint violation by

strategically precooling the cold plate walls prior to the increase in load, as seen by the

temperatures of cold plates 1 and 4.

Figure 7.8 Measured fluid pressures at the outlet of each pump and inlet to heat exchanger

2 (top), measured mass flow rates at the outlet of each pump and inlet to heat exchanger 2

(middle), and pump input signals (bottom).

 136

7.5 Chapter Conclusions

The results in this Chapter demonstrate the ability to develop a practical hierarchical

controller based on linear graph models for an experimental system without guaranteed stability

or robust feasibility. The proposed control framework shows how hydraulic and thermal graph

models, developed and validated in Chapter 6, can be used by controllers at different levels of

the hierarchy. With the three levels of control, the thermal, hydraulic, and actuator dynamics can

be effectively controlled, despite the timescale separation between these dynamics. These

controllers form the lowest levels of the larger control hierarchy shown in Fig. 3.1. Within the

overall hierarchy, these controllers have the difficult task of compensating for the nonlinearity,

sensor noise, model mismatch, and time delays common to many physical systems. Thus, the

preliminary experimental results in this Chapter demonstrate the potential of model-based

hierarchical control in practice. In addition to summarizing of the contribution of this

dissertation, the following Chapter discusses several practical extensions of the theoretical result

from Chapters 5 and 6 that would help create a highly functional controller for more complex,

multiple energy domain systems with guaranteed stability and robust feasibility.

 137

Chapter 8

Conclusion

8.1 Summary of Research Contributions

 This dissertation develops, analyzes, and demonstrates a hierarchical control framework

for energy management in vehicle systems. Effective energy management is vital to maximizing

the capability of these complex systems to meet the constantly growing demands for

performance, efficiency, and reliability. With multiple systems and subsystems of various energy

domains interacting over a wide range of timescales, these vehicle systems require both

modeling and control frameworks that are widely applicable, scalable, robust, high performance,

and computationally efficient.

This need is addressed through contributions in the following four areas.

1. Chapter 2 develops a generic graph-based modeling framework that captures the

energy storage and power flow dynamics in multiple energy domains and

timescales. Thus, this modeling approach is widely applicable to many types of

systems and is scalable to large systems due to the modularity of graph-based

modeling. The approach is also computationally efficient, using a relatively few

number of states to capture the complex dynamics of the energy storage and

routing throughout a system.

2. Chapter 3 utilizes these graph-based models to develop a multi-level hierarchical

control framework, where each level consists of multiple MPC-based controllers.

The graph-based modeling framework is directly used to formulate the structure

of the control hierarchy as well as the models used by the controllers at each level

 138

of the hierarchy via a novel graph-based model reduction technique. Simulation

results demonstrate the high performance achieved when the update rate of

controllers at each level of the hierarchy is paired with a particular timescale of

the multi-timescale system. Through model reduction and large prediction

horizons with relatively few prediction steps, the hierarchical controller achieves

this performance with high computational efficiency.

3. Chapters 4 and 5 analyze the theoretical properties of the proposed hierarchical

controller with respect to stability and robust feasibility. Chapter 4 presents a

widely applicable and scalable procedure for augmenting a hierarchical controller

with simple, local constraints based on passivity that guarantee closed-loop

stability of the system. Chapter 5 presents a hierarchical control framework for

linear graph-based power flow systems that is robust to model and disturbance

signal uncertainty. This control formulation achieves high performance by

maintaining critical state and actuator constraints while achieving system-specific

objectives.

4. Chapters 6 and 7 demonstrate the practical application of both the graph-based

modeling and hierarchical control frameworks through application to an

experimental thermal fluid system. These Chapters prove that the proposed

approaches are widely applicable; being capable of capturing the complex

dynamics of a real-world system that includes nonlinearity, unknown

disturbances, and time delays.

In conclusion, this dissertation shows that graph-based modeling and hierarchical control

are promising approaches to energy management onboard vehicles, worthy of continued

development both in theory and application.

8.2 Future Work

This dissertation presents the initial formulation, analysis, and implementation of a

hierarchical control framework for energy management in vehicle systems and future work

should build off this foundation through advancements in theory and application. Fig. 1.3,

reshown as Fig. 8.1, provides an outline for this future research.

 139

Figure 8.1 Outline of developments required for the realization of hierarchical control of

power flow in vehicle systems.

8.2.1 Techniques

Several aspects of the generic graph-based modeling and hierarchical control

development procedures presented in Chapters 2 and 3 should be studied further to make these

approaches more practical for modeling vehicle systems.

1. Further modeling and validation should be performed for representing systems as

graphs in other energy domains, electrical systems in particular. For these

systems, it will become vital to incorporate the ability to represent discrete

actuator inputs such as the on/off of a switch.

2. Novel methods for integrating graph models based on different conserved

quantities should be developed. In Chapter 6, hydraulic and thermal graph models

are developed based on conservation of mass and energy, respectively. A method

for combining these graphs into a single system representation would enable the

Development

Application

Theory

Techniques

Numerical

Simulation

Experimental

Demonstration

Hierarchical

Control of

Vehicle

Stability Feasibility

Graph-based

Modeling

Hierarchical

Control
Design

Optimization

Practical

Extensions

2 3

4 5

6
7

 140

hierarchical control methods developed in Chapters 3-5 to be more directly

applied to systems with more than one conserved quantity.

3. Methods for system decomposition, both spatially and temporally, should be

developed specifically for hierarchical control. The effects of system and

subsystem boundaries should be investigated as well as the designation of

timescales when vertex capacitances may not be obviously grouped.

4. The tradeoff between computational demand and control performance should be

analyzed to provide guidance for the choice of controller update rates and

prediction horizons at each level of the hierarchy.

5. Cost function design for each level of the hierarchy should be investigated to

better understand how local objectives can be designed to achieve global

objectives for the vehicle.

Numbers 3-5 are a few examples of the Design Optimization efforts shown in Fig. 8.1

that are needed to improve the performance of the hierarchical control approach and maximize

the capability of the vehicle.

8.2.2 Theory

Within the classes of graph-based power flow systems considered in Chapters 4 and 5,

there are numerous aspects of hierarchical control that warrant additional attention from a

theoretical perspective.

1. The passivity-based approach used to establish stability in Chapter 4, like with

most passivity approaches, suffers from conservatism that could detract from the

performance of the overall hierarchical controller. Understanding this

conservatism would be valuable, especially in relation to the common control

behavior of “precooling,” where states are purposely driven away from their

equilibrium to accommodate larger future power flows through the system.

2. The proposed robust hierarchical controller in Chapter 5 could be improved and

analyzed in a number of ways.

 141

a. Currently, known disturbances can only change at the rate of the slowest

controller at the top of the hierarchy. Allowing intersample disturbance

changes would greatly improve the practicality of this approach.

b. The feedback integralization approach requires an actuator input along

each edge of the graph. Extending this method to systems with edges that

do not have a dedicated actuator would significantly improve the

applicability of this approach.

c. The proposed approach requires desired state trajectories and power flows

to be tracked perfectly by lower level controllers. Allowing imperfect

tracking may result in improved overall system-level control performance

and should be investigated.

d. Fast states are currently bounded to be close to an assumed value used by

the upper level controllers. The effect of the magnitude of this bound on

performance should be analyzed to determine the tradeoff between

flexibility at the lower levels and conservative constraint tightening at the

upper levels.

e. While not discussed in this dissertation, many vehicle systems have hybrid

dynamics, where in addition to continuous dynamics, the vehicle

undergoes discrete changes such as the turning on and off of entire

systems or subsystems. Instead of continuously variable actuators, many

systems also have actuators that operate at discrete values. A hierarchical

control framework capable of effectively controlling this class of systems

would be highly valuable.

Each of these suggested topics of continued research are examples of the Practical

Extensions shown in Fig. 8.1 that will enable the application of these valuable theoretical

guarantees to a real physical system, such as the experimental system from Chapters 6 and 7 and

future vehicle systems.

 142

8.2.3 Application

The proposed graph-based modeling and hierarchical control frameworks need to be

further tested on a wide variety of systems including physical systems with multiple energy

domains and wider ranges of timescales. To maximize the performance of the control hierarchy,

the following practical extensions should be investigated.

1. Controlling the interactions between the electrical and thermal systems is key to

increasing the performance and reliability of the vehicle as a whole. A

hierarchical controller that encompasses the control of both systems would allow

the operation of the electrical system to be partially governed based on current

and anticipated thermal constraints.

2. While the hierarchical controller presented in Chapter 7 utilized a linearized

model of the nonlinear experimental system dynamics, future controller

development should explore the use of nonlinear graph-based models and the

optimization routines, such as genetic algorithms, used to solve the resulting

nonlinear optimization problems. The trade-off between control performance and

computational burden would be of particular interest.

3. The hierarchical controllers presented in this dissertation use a time-based control

updating procedure where the time step between control updates is predetermined.

As preliminarily demonstrated in [89], an event-based updating of each controller

in the hierarchy could result in significant performance enhancements.

4. All controller computations in this dissertation are performed on powerful desktop

computers. Thus, while the hierarchical controllers are designed to be

computationally efficient, computation time never restricted the design of the

controllers. In practice, the computational resources onboard vehicle may be very

limited and each computation adds heat to the vehicle that must also be managed.

Future work should investigate how computational cost and overall controller

performance are related for hierarchical control.

As shown in Fig. 8.1, the ultimate extension of the proposed approach is the application

of a highly functional, five-level hierarchical controller to the energy management of a real

vehicle system.

 143

References

[1] W. D. Gerstler and R. S. Bunker, “Aircraft Engine Thermal Management: The Impact of

Aviation Electric Power Demands,” ASME Global Gas Turbine News, 2008.

[2] S. S. L. Mitchell, “Luke AFB changes refueling truck color, mitigates F-35 shutdowns,”

United States Air Force, 2014. [Online]. Available:

http://www.af.mil/News/ArticleDisplay/tabid/223/Article/555558/luke-afb-changes-

refueling-truck-color-mitigates-f-35-shutdowns.aspx.

[3] J. Rubinstein, “Study of the Light Utility Helicopter (LUH) acquisition program as a

model for defense acquisition of non-developmental items,” Ph.D. Dissertation, Naval

Postgraduate School, Monterey, CA, 2014.

[4] C. Bailey, “Thermal Management Technologies for Electronic Packaging: Current

Capabilities and Future Challenges for Modeling Tools,” 10th Electron. Packag. Technol.

Conf., 2008.

[5] G. Andersson, “Dynamics and Control of Electric Power Systems,” Lect. Notes Electr.

Eng. Power Syst. Lab. ETH Zurich, 2012.

[6] P. de Bock, “GE Aviation Systems Avionics: Avionics Thermal Management,” GE Glob.

Res., 2012.

[7] M. Bodie, G. Russell, K. Mccarthy, E. Lucus, J. Zumberge, and M. Wolff, “Thermal

Analysis of an Integrated Aircraft Model,” 48th AIAA Aerosp. Sci. Meet., 2010.

[8] K. Mccarthy, M. Amrhein, P. Lamm, M. Wolff, K. Yerkes, O. Connell, B. Raczkowski, J.

Wells, and W. Borger, “INVENT Modeling, Simulation, Analysis and Optimization,”

48th AIAA Aerosp. Sci. Meet., 2010.

[9] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, “Model Predictive

Control for the Operation of Building Cooling Systems,” IEEE Trans. Control Syst.

Technol., vol. 20, 2012.

[10] P.-D. Morosan, R. Bourdais, D. Dumur, and J. Buisson, “Building temperature regulation

using a distributed model predictive control,” Energy Build., 2010.

[11] N. Jain, J. P. Koeln, S. Sundaram, and A. G. Alleyne, “Partially decentralized control of

large-scale variable-refrigerant-flow systems in buildings,” J. Process Control, 2014.

[12] M. Cantoni, E. Weyer, L. Yuping, S. K. Ooi, I. Mareels, and M. Ryan, “Control of Large-

Scale Irrigation Networks,” Proc. IEEE, 2007.

 144

[13] R. R. Negenborn, A. Sahin, Z. Lukszo, B. De Schutter, and M. Morari, “A non-iterative

cascaded predictive control approach for control of irrigation canals,” IEEE Int. Conf.

Syst. Man Cybern., 2009.

[14] C. Ocampo-Martinez, D. Barcelli, V. Puig, and A. Bemporad, “Hierarchical and

decentralised model predictive control of drinking water networks: application to

Barcelona case study,” IET Control Theory Appl., 2012.

[15] D. Gayme and U. Topcu, “Optimal Power Flow With Large-Scale Storage Integration,”

IEEE Trans. Power Syst., 2012.

[16] X. Xu, H. Jia, D. Wang, D. C. Yu, and H.-D. Chiang, “Hierarchical energy management

system for multi-source multi-product microgrids,” Renew. Energy, 2015.

[17] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Distributed model

predictive control: A tutorial review and future research directions,” Comput. Chem. Eng.,

2013.

[18] M. J. Tippett and J. Bao, “Distributed Model Predictive Control Based on Dissipativity,”

AIChE J., 2012.

[19] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, “Moving Towards a More Electric

Aircraft,” IEEE A&E Syst. Mag., 2007.

[20] T. Mahefkey, K. Yerkes, B. Donovan, and M. L. Ramalingam, “Thermal Management

Challenges For Future Military Aircraft Power Systems,” SAE Tech. Pap. 2004-01-3204,

2004.

[21] M. A. Williams, J. P. Koeln, and A. G. Alleyne, “Hierarchical Control of Multi-Domain

Power Flow in Mobile Systems - Part II: Aircraft Application,” ASME 2015 Dyn. Syst.

Control Conf., 2015.

[22] B. Frank, J. Pohl, and J.-O. Palmberg, “Estimation of the potential in predictive control in

a hybrid wheel loader,” 11th Scand. Int. Conf. Fluid Power, 2009.

[23] F. Wang, A. M. Zulkefli, Z. Sun, and K. A. Stelson, “Investigation on the Energy

Management Strategy for Hydraulic Hybrid Wheel Loaders,” ASME 2013 Dyn. Syst.

Control Conf., 2013.

[24] T. O. Deppen, A. G. Alleyne, K. A. Stelson, and J. J. Meyer, “Optimal Energy Use in a

Light Weight Hydraulic Hybrid Passenger Vehicle,” J. Dyn. Syst. Meas. Control, vol. 134,

2012.

[25] C. Alan, S. Ali, H. Alaa, and B. Eric, “Optimal sizing of an energy storage system for a

hybrid vehicle applied to an off-road application,” IEEE/ASME Int. Conf. Adv. Intell.

Mechatronics, 2014.

[26] B. G. Liptak, Process Control, 3rd ed. Chilton, 1995.

[27] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: Modeling,

Simulation, and Control of Mechatronic Systems, Fifth. Wiley, 2012.

[28] H. A. Preisig, “A graph-theory-based approach to the analysis of large-scale plants,”

Comput. Chem. Eng., 2009.

 145

[29] S. S. Jogwar, S. Rangarajan, and P. Daoutidis, “Reduction of complex energy-integrated

process networks using graph theory,” Comput. Chem. Eng., vol. 79, 2015.

[30] S. Mukherjee, S. Mishra, and J. T. Wen, “Building Temperature Control: A Passivity-

Based Approach,” Proc. IEEE Conf. Decis. Control, 2012.

[31] K. L. Moore, T. L. Vincent, F. Lashhab, and C. Liu, “Dynamic Consensus Networks with

Application to the Analysis of Building Thermal Processes,” IFAC World Congr., 2011.

[32] H. Behjati, A. Davoudi, and F. Lewis, “Modular DC-DC Converters on Graphs:

Cooperative Control,” IEEE Trans. Power Electron., 2014.

[33] F. Blanchini, E. Franco, G. Giordano, V. Mardanlou, and P. L. Montessoro,

“Compartmental flow control: Decentralization, robustness and optimality,” Automatica,

2016.

[34] G. Bastin and V. Guffens, “Congestion control in compartmental network systems,” Syst.

Control Lett., 2006.

[35] J. Jacquez and C. Simon, “Qualitative theory of Compartmental Systems,” SIAM Rev.,

1993.

[36] D. B. West, Introduction to Graph Theory. Prentice-Hall Inc., 2001.

[37] J. Maestre and R. Negenborn, Distributed Model Predictive Control Made Easy. Springer,

2014.

[38] R. Mohler, “Natural Bilinear Control Processes,” IEEE Trans. Syst. Sci. Cybern., vol. 6,

1970.

[39] C. Bruni, G. DiPillo, and G. Koch, “Bilinear systems: An appealing class of ‘nearly linear’

systems in theory and applications,” IEEE Trans. Automat. Contr., vol. 19, Aug. 1974.

[40] N. Motee and B. Sayyar-rodsari, “Optimal Partitioning in Distributed Model Predictive

Control,” Am. Control Conf., 2003.

[41] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” 2004

IEEE Int. Conf. Comput. Aided Control Syst. Des., 2004.

[42] “Gurobi Optimizer Reference Manual.” Gurobi Optimization Inc., 2016.

[43] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE Trans.

Automat. Contr., 1976.

[44] H. Khalil, Nonlinear Systems, Third. Prentice-Hall Inc., 2002.

[45] R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear Control. Springer-

Verlag London, 1997.

[46] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer,

1996.

[47] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based Control of

Euler-Lagrange Systems. Springer, 1998.

[48] A. Ulbig, “Passivity-based Nonlinear Model Predictive Control,” University of Stuttgart,

2007.

 146

[49] J. Bao and P. L. Lee, Process Control: The Passive Systems Approach. Springer, 2007.

[50] P. Falugi, “Model predictive control : a passive scheme,” IFAC World Congr., 2014.

[51] C. Løvaas, M. M. Seron, and G. C. Goodwin, “A dissipativity approach to robustness in

constrained model predictive control,” Proc. IEEE Conf. Decis. Control, 2007.

[52] T. Raff, C. Ebenbauer, and F. Allgöwer, “Nonlinear Model Predictive Control: A

Passivity-Based Approach,” in Assessment and Future Directions of Nonlinear Model

Predictive Control, 2007.

[53] S. Sredojev and R. Eaton, “Model Predictive Controller for a Class of Nonlinear

Dissipative Systems,” Am. Control Conf., 2014.

[54] H. Yu, F. Zhu, M. Xia, and P. J. Antsaklis, “Robust Stabilizing Output Feedback

Nonlinear Model Predictive Control by Using Passivity and Dissipativity,” Proc. 2013

Eur. Control Conf., 2013.

[55] P. Varutti, B. Kern, and R. Findeisen, “Dissipativity-based Distributed Nonlinear

Predictive Control for Cascaded Nonlinear Systems,” IFAC Symp. Adv. Control Chem.

Process., 2012.

[56] M. Arcak and E. D. Sontag, “A passivity-based stability criterion for a class of

biochemical reaction networks,” Math. Biosci. Eng., 2008.

[57] H. Yu and P. J. Antsaklis, “A passivity measure of systems in cascade based on passivity

indices,” Proc. IEEE Conf. Decis. Control, 2010.

[58] S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-Play Decentralized Model

Predictive Control for Linear Systems,” IEEE Trans. Automat. Contr., 2013.

[59] P. J. Moylan and D. J. Hill, “Stability criteria for large-scale systems,” IEEE Trans.

Automat. Contr., 1978.

[60] T. Tran and J. Bao, “Supervisory Stability Assurance Layer for Hierarchical Plant-wide

Process Control,” Am. Control Conf., 2010.

[61] A. Wächter, “An Interior Point Algorithm for Large-Scale Nonlinear Optimization with

Applications in Process Engineering,” Dept. Chem. Eng., Carnegie Mellon Univ.,

Pittsburg, PA., 2002.

[62] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust Model Predictive Control of

Constrained Linear Systems with Bounded Disturbances,” Automatica, 2005.

[63] W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne, “Robust model predictive

control using tubes,” Automatica, vol. 40, 2004.

[64] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking piecewise

constant references for constrained linear systems,” Automatica, vol. 44, 2008.

[65] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based MPC for

tracking of constrained linear systems with additive disturbances,” J. Process Control,

vol. 20, 2010.

[66] M. Farina and R. Scattolini, “Distributed predictive control: A non-cooperative algorithm

with neighbor-to-neighbor communication for linear systems,” Automatica, vol. 48, 2012.

 147

[67] S. Riverso and G. Ferrari-Trecate, “Tube-based distributed control of linear constrained

systems,” Automatica, vol. 48, 2012.

[68] P. Trodden and A. Richards, “Distributed model predictive control of linear systems with

persistent disturbances,” Int. J. Control, vol. 83, 2010.

[69] P. Trodden, “Feasible parallel-update distributed MPC for uncertain linear systems

sharing convex constraints,” Syst. Control Lett., vol. 74, 2014.

[70] R. Scattolini and P. Colaneri, “Hierarchical model predictive control,” IEEE Conf. Decis.

Control, 2007.

[71] R. Scattolini, P. Colaneri, and D. De Vito, “A switched MPC approach to hierarchical

control,” 17th IFAC World Congr., 2008.

[72] B. Picasso, D. De Vito, R. Scattolini, and P. Colaneri, “An MPC approach to the design of

two-layer hierarchical control systems,” Automatica, vol. 46, 2010.

[73] D. Barcelli, A. Bemporad, and G. Ripaccioli, “Hierarchical Multi-Rate Control Design for

Constrained Linear Systems,” IEEE Conf. Decis. Control, 2010.

[74] D. Barcelli, A. Bemporad, and G. Ripaccioli, “Decentralized Hierarchical Multi-Rate

Control of Constrained Linear Systems,” 18th IFAC World Congr., 2011.

[75] C. Vermillion, A. Menezes, and I. Kolmanovsky, “Stable hierarchical model predictive

control using an inner loop reference model and λ-contractive terminal constraint sets,”

Automatica, vol. 50, 2014.

[76] B. Picasso, C. Romani, and R. Scattolini, “On the Design of Hierarchical Control Systems

with MPC,” Eur. Control Conf., 2009.

[77] V. Chandan and A. G. Alleyne, “Optimal partitioning for the Decentralized Thermal

Control of Buildings,” IEEE Trans. Control Syst. Technol., vol. 21, 2013.

[78] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and design,

2nd ed. John Wiley & Sons, Inc., 2005.

[79] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in

European Control Conference, 2013.

[80] B. P. Rasmussen, “Dynamic Modeling and Advanced Control of Air Conditioning and

Refrigeration Systems,” Ph.D. Dissertation, Dept. Mech. Eng., Univ. Illinois Urbana-

Champaign, Urbana, IL, 2005.

[81] M. Kania, J. Koeln, and A. Alleyne, “A Dynamic Modeling Toolbox for Air Vehicle

Vapor Cycle Systems,” Proc. 2012 SAE Power Syst. Conf., 2012.

[82] M. Williams, S. Sridharan, S. Banerjee, C. Mak, C. Pauga, P. Krein, A. Alleyne, A.

Jacobi, and S. D. Urso, “PowerFlow : A Toolbox for Modeling and Simulation of Aircraft

Systems,” SAE Tech. Pap. 2015-01-2417, 2015.

[83] A. Puntel, S. Emo, T. E. Michalak, J. Ervin, L. Byrd, V. Tsao, and T. Reitz, “Refrigerant

Charge Management and Control for Next-Generation Aircraft Vapor Compression

Systems,” SAE Tech. Pap. 2013-01-2241, 2013.

[84] T. O. Deppen, “Optimal Energy Use in Mobile Applications with Storage,” Ph.D.

 148

Dissertation, Dept. Mech. Eng., Univ. Illinois Urbana-Champaign, Urbana, IL, 2013.

[85] T. O. Deppen, J. E. Hey, A. G. Alleyne, and T. S. Fisher, “A Model Predictive Framework

for Thermal Management of Aircraft,” ASME 2015 Dyn. Syst. Control Conf., 2015.

[86] S. K. Srivastava, D. A. Cartes, F. Maturana, F. Ferrese, M. Pekala, M. Zink, R. Meeker,

D. Carnahan, R. Staron, D. Scheidt, and K. Huang, “A Control System Test Bed for

Demonstration of Distributed Computational Intelligence Applied to Reconfiguring

Heterogeneous Systems,” IEEE Instrum. Meas. Mag., 2008.

[87] V. Gnielinski, “New Equations for Heat and Mass-transfer in Turbulent Pipe and Channel

Flow,” Int. Chem. Eng., 1976.

[88] G. A. Longo and A. Gasparella, “Refrigerant R134a vaporisation heat transfer and

pressure drop inside a small brazed plate heat exchanger,” Int. J. Refrig., 2007.

[89] J. P. Koeln and A. G. Alleyne, “Event-based Hierarchical Control for Power Flow in

Vehicle Systems,” Am. Control Conf., 2016.

 149

Appendix

Robust Hierarchical Controller Code

The following Matlab code is used to implement the numerical example of the robust

hierarchical controller from Section 5.8. Figs. A.1 and A.2 show the structure of the code for the

generation of the controllers and the Simulink model used to execute the simulation.

Figure A.1 Structure of Matlab files used to generate the robust hierarchical controller.

Sys_Gen

SS1_Gen

SS2_Gen

SS3_Gen

SS4_Gen

S1_Gen

S1r_Gen

S2_Gen

S2r_Gen

Veh_Gen

Vehr_Gen

Call_Level_1_Controller

Call_Level_i_Controller

Call_Level_N_Controller

Constraint_Tightening

Generic_Reduced_Subsystem_Gen

Generic_Subsystem_Gen

Level_1_Controller_Gen

Level_i_Controller_Gen

Level_N_Controller_Gen

Nominal_Constraints

Candidate_Controller

Robust_Constraints

State_Reordering

Tracking_Constraint_Matrices

Generic_Controller_Development

 150

Figure A.2 Structure of Matlab files called within the Simulink model used to simulate the

robust hierarchical controller.

A.1 Generic_Controller_Development.m

%% Generate Systems
run('Sys_Gen')
run('SS1_Gen')
run('SS2_Gen')
run('SS3_Gen')
run('SS4_Gen')
run('S1_Gen')
run('S1r_Gen')
run('S2_Gen')
run('S2r_Gen')
run('Veh_Gen')
run('Vehr_Gen')
% Flags to plot and time result of controller calls
plot_ = 1;
time = 1;
% Control design parameters
Sys.Dx_LL_max_value = 0.1; % Bound on lower level tracking
Sys.DP_max_value = 0.1; % Bound on power flow uncertainty
Sys.DPin_max_value = 0.1; % Bound on inlet power flow uncertainty
Sys.Dxt_max_value = 0.1; % Bound on sink state uncertainty

%% Simulation Parameters
% Simulation time
Sys.Tsim = 1000;
% Disturbance preview flag
Sys.preview = 1;
% Size of controller output
Sys.Output_size = Sys.Ne+Sys.Ns+Sys.Nt;

%% Nominal Sets for Controllers
SS1 = Nominal_Constraints(SS1);
SS2 = Nominal_Constraints(SS2);
SS3 = Nominal_Constraints(SS3);

Three_Level_Sim

Call_Level_1_Controller

Call_Level_i_Controller

Call_Level_N_Controller

Dist_Three_Level

Rate_Transition

SystemThree_Level_Controller

 151

SS4 = Nominal_Constraints(SS4);
S1 = Nominal_Constraints(S1);
S1r = Nominal_Constraints(S1r);
S2 = Nominal_Constraints(S2);
S2r = Nominal_Constraints(S2r);
Veh = Nominal_Constraints(Veh);
Vehr = Nominal_Constraints(Vehr);

%% Constraint tightening for Subsystem Controller
% Candidate (nilpotent) feedback controller
SS1 = Candidate_Controller(SS1);
SS2 = Candidate_Controller(SS2);
SS3 = Candidate_Controller(SS3);
SS4 = Candidate_Controller(SS4);
% Upper bounds on DeltaP (assumed the same for all edges)
SS1.DP_max = Sys.DP_max_value*ones(SS1.Ne,1);
SS2.DP_max = Sys.DP_max_value*ones(SS2.Ne,1);
SS3.DP_max = Sys.DP_max_value*ones(SS3.Ne,1);
SS4.DP_max = Sys.DP_max_value*ones(SS4.Ne,1);
% Lower bounds on DeltaP (assumed negative of upper bound)
SS1.DP_min = -SS1.DP_max;
SS2.DP_min = -SS2.DP_max;
SS3.DP_min = -SS3.DP_max;
SS4.DP_min = -SS4.DP_max;
% Generate polyhedron for set DeltaP
SS1.Set_DP = Polyhedron('lb',SS1.DP_min,'ub',SS1.DP_max);
SS2.Set_DP = Polyhedron('lb',SS2.DP_min,'ub',SS2.DP_max);
SS3.Set_DP = Polyhedron('lb',SS3.DP_min,'ub',SS3.DP_max);
SS4.Set_DP = Polyhedron('lb',SS4.DP_min,'ub',SS4.DP_max);

%% Calcuate Error Sets
% Following a sequence such that each system only has power entering
% from the environment or a subsystem earlier in the sequence
% SS1
% Upper bound on inlet power uncertainty
SS1.DPin_max = Sys.DPin_max_value;
% Lower bound on inlet power uncertainty
SS1.DPin_min = -SS1.DPin_max;
% Generate polyhedron for set DeltaPin
SS1.Set_DPin = Polyhedron('lb',SS1.DPin_min,'ub',SS1.DPin_max);
% Calculate State Error Set
SS1.Set_E = plus(affineMap(SS1.Set_DP,SS1.B),...
 affineMap(SS1.Set_DPin,SS1.V1));
% Calculate Power Error Set
SS1.Set_dP = affineMap(SS1.Set_E,SS1.K);

% SS2
% Upper bound on first inlet power uncertainty (power flow along edge 4)
SS2.Set_dPin = SS1.Set_dP.projection(4); % Project power error for edge
SS2.dPin_max = SS2.Set_dPin.H(1,end); % Isolate maximum value
SS2.DPin_max = [Sys.DPin_max_value;SS2.dPin_max];
% Lower bound on inlet power uncertainty
SS2.DPin_min = -SS2.DPin_max;
% Generate polyhedron for set DeltaPin
SS2.Set_DPin = Polyhedron('lb',SS2.DPin_min,'ub',SS2.DPin_max);

 152

% Calculate State Error Set
SS2.Set_E = plus(affineMap(SS2.Set_DP,SS2.B),...
 affineMap(SS2.Set_DPin,SS2.V1));
% Calculate Power Error Set
SS2.Set_dP = affineMap(SS2.Set_E,SS2.K);

% SS4
% Upper bound on first inlet power uncertainty (power flow along edge 9)
SS4.Set_dPin = SS2.Set_dP.projection(4); % Project power error for edge
SS4.dPin_max = SS4.Set_dPin.H(1,end); % Isolate maximum value
SS4.DPin_max = SS4.dPin_max;
% Lower bound on inlet power uncertainty
SS4.DPin_min = -SS4.DPin_max;
% Generate polyhedron for set DeltaPin
SS4.Set_DPin = Polyhedron('lb',SS4.DPin_min,'ub',SS4.DPin_max);
% Calculate State Error Set
SS4.Set_E = plus(affineMap(SS4.Set_DP,SS4.B),...
 affineMap(SS4.Set_DPin,SS4.V1));
% Calculate Power Error Set
SS4.Set_dP = affineMap(SS4.Set_E,SS4.K);

% SS3
% Upper bound on first inlet power uncertainty (power flow along edge 8)
SS3.Set_dPin1 = SS1.Set_dP.projection(5); % Project power error for edge
SS3.dPin1_max = SS3.Set_dPin1.H(1,end); % Isolate maximum value
% Upper bound on second inlet power uncertainty (power flow along edge 14)
SS3.Set_dPin2 = SS4.Set_dP.projection(4); % Project power error for edge
SS3.dPin2_max = SS3.Set_dPin2.H(1,end); % Isolate maximum value
SS3.DPin_max = [SS3.dPin1_max;SS3.dPin2_max];
% Lower bound on inlet power uncertainty
SS3.DPin_min = -SS3.DPin_max;
% Generate polyhedron for set DeltaPin
SS3.Set_DPin = Polyhedron('lb',SS3.DPin_min,'ub',SS3.DPin_max);
% Calculate State Error Set
SS3.Set_E = plus(affineMap(SS3.Set_DP,SS3.B),...
 affineMap(SS3.Set_DPin,SS3.V1));
% Calculate Power Error Set
SS3.Set_dP = affineMap(SS3.Set_E,SS3.K);

%% Sink State Uncertainty Sets
% SS1
% Upper bound on first sink state uncertainty (state of vertex 10)
SS1.Set_dXt1 = SS2.Set_E.projection(3); % Project state error for vertex
SS1.Set_dXt1_max = SS1.Set_dXt1.H(1,end); % Isolate maximum value
% Upper bound on second sink state uncertainty (state of vertex 11)
SS1.Set_dXt2 = SS3.Set_E.projection(3); % Project state error for vertex
SS1.Set_dXt2_max = SS1.Set_dXt2.H(1,end); % Isolate maximum value
SS1.Set_dXt_max = [SS1.Set_dXt1_max,SS1.Set_dXt2_max];
% Lower bound on sink state uncertainty
SS1.Set_dXt_min = -SS1.Set_dXt_max;
% Generate polyhedron for set DeltaXt
SS1.Set_dXt = Polyhedron('lb',SS1.Set_dXt_min,'ub',SS1.Set_dXt_max);

% SS2

 153

% Upper bound on sink state uncertainty (state of vertex 7)
SS2.Set_dXt1 = SS4.Set_E.projection(2); % Project state error for vertex
SS2.Set_dXt1_max = SS2.Set_dXt1.H(1,end); % Isolate maximum value
SS2.Set_dXt_max = [SS2.Set_dXt1_max];
% Lower bound on sink state uncertainty
SS2.Set_dXt_min = -SS2.Set_dXt_max;
% Generate polyhedron for set DeltaXt
SS2.Set_dXt = Polyhedron('lb',SS2.Set_dXt_min,'ub',SS2.Set_dXt_max);

% SS3
% Upper bound on sink state uncertainty (sink state xt1)
SS3.Set_dXt_max = [Sys.Dxt_max_value];
% Lower bound on sink state uncertainty
SS3.Set_dXt_min = -SS3.Set_dXt_max;
% Generate polyhedron for set DeltaXt
SS3.Set_dXt = Polyhedron('lb',SS3.Set_dXt_min,'ub',SS3.Set_dXt_max);

% SS4
% Upper bound on first sink state uncertainty (state of vertex 11)
SS4.Set_dXt1 = SS3.Set_E.projection(3); % Project state error for vertex
SS4.Set_dXt1_max = SS4.Set_dXt1.H(1,end); % Isolate maximum value
% Upper bound on second sink state uncertainty (sink state xt2)
SS4.Set_dXt2_max = Sys.Dxt_max_value;
SS4.Set_dXt_max = [SS4.Set_dXt1_max,SS4.Set_dXt2_max];
% Lower bound on sink state uncertainty
SS4.Set_dXt_min = -SS4.Set_dXt_max;
% Generate polyhedron for set DeltaXt
SS4.Set_dXt = Polyhedron('lb',SS4.Set_dXt_min,'ub',SS4.Set_dXt_max);

%% Generate Robust State and Input Constraint Sets
SS1 = Constraint_Tightening(SS1);
SS2 = Constraint_Tightening(SS2);
SS3 = Constraint_Tightening(SS3);
SS4 = Constraint_Tightening(SS4);

%% Subsystem tracking constraint set
SS1 = Tracking_Constraint_Matrices(SS1,SS1,S1r);
SS2 = Tracking_Constraint_Matrices(SS2,SS2,S1r);
SS3 = Tracking_Constraint_Matrices(SS3,SS3,S2r);
SS4 = Tracking_Constraint_Matrices(SS4,SS4,S2r);
S1r = Tracking_Constraint_Matrices(S1r,S1,Vehr);
S2r = Tracking_Constraint_Matrices(S2r,S2,Vehr);

%% Constraint Tightening for Upper Levels
% Robust constraints are initial formed from the subsystem robust constraints
% S1r
% Robust state constraints
S1r.x_max_robust = [SS2.Set_X_robust.H(1,end);SS1.Set_X_robust.H(1,end);...
 SS2.Set_X_robust.H(2,end);SS2.Set_X_robust.H(3,end)];
S1r.x_min_robust = -S1r.x_max_robust;
% Robust input constraints
S1r.U_max_robust =

[SS1.Set_U_robust.H(1:4,end);SS2.Set_U_robust.H(1:3,end);...
 SS1.Set_U_robust.H(5,end);SS2.Set_U_robust.H(4,end)];

 154

S1r.U_min_robust = -S1r.U_max_robust;

% S2r
% Robust state constraints
S2r.x_max_robust = [SS3.Set_X_robust.H(1,end);SS3.Set_X_robust.H(2,end);...
 SS4.Set_X_robust.H(1,end);SS4.Set_X_robust.H(2,end);...
 SS3.Set_X_robust.H(3,end)];
S2r.x_min_robust = -S2r.x_max_robust;
% Robust input constraints
S2r.U_max_robust = [SS3.Set_U_robust.H(1:4,end);SS4.Set_U_robust.H(4,end);...
 SS4.Set_U_robust.H(1:3,end);SS4.Set_U_robust.H(5,end)];
S2r.U_min_robust = -S2r.U_max_robust;

% Vehr
% Robust state constraints
Vehr.x_max_robust = [SS2.Set_X_robust.H(1,end);SS3.Set_X_robust.H(1,end);...
 SS4.Set_X_robust.H(2,end);SS3.Set_X_robust.H(3,end)];
Vehr.x_min_robust = -Vehr.x_max_robust;
% Robust input constraints
Vehr.U_max_robust = [S1r.U_max_robust;S2r.U_max_robust];
Vehr.U_min_robust = -Vehr.U_max_robust;
% Generate polyhedron for robust sets
S1r = Robust_Constraints(S1r,Sys.Dx_LL_max_value);
S2r = Robust_Constraints(S2r,Sys.Dx_LL_max_value);
Vehr = Robust_Constraints(Vehr,Sys.Dx_LL_max_value);

%% Z matrices for state reordering
S1r = State_Reordering(S1r,S1);
S2r = State_Reordering(S2r,S2);
Vehr = State_Reordering(Vehr,Veh);

%% Weights
% Nominal weightings (1,1,0), pure economic (0,0,1)
weightings.x = 0;
weightings.u = 0;
weightings.u_eff = 1;

%% Constraint Flags
constraints.robustOn = 1;
constraints.stateTrackingOn = 1;
constraints.pOutTrackingOn = 1;
constraints.lowerStateBoundsOn = 1;
constraints.Dx_LL_max_value = Sys.Dx_LL_max_value;

%% Level N Controller Generation
% SS1
SS1.horizon = 5; % Prediction horizon
SS1 = Level_N_Controller_Gen(SS1, weightings, constraints);
% SS2
SS2.horizon = 5; % Prediction horizon
SS2 = Level_N_Controller_Gen(SS2, weightings, constraints);
% SS3
SS3.horizon = 5; % Prediction horizon
SS3 = Level_N_Controller_Gen(SS3, weightings, constraints);

 155

% SS4
SS4.horizon = 5; % Prediction horizon
SS4 = Level_N_Controller_Gen(SS4, weightings, constraints);

%% Level i Controller Generation
% S1r
S1r.horizon = 5; % Prediction horizon
S1r = Level_i_Controller_Gen(S1r, weightings, constraints);
% S2r
S2r.horizon = 5; % Prediction horizon
S2r = Level_i_Controller_Gen(S2r, weightings, constraints);

%% Level 1 Controller Generation
% Vehr
Vehr.horizon = 5; % Prediction horizon
Vehr = Level_1_Controller_Gen(Vehr, weightings, constraints);

%% Test Vehr Controller
Vehr.x0 = Vehr.x0;
Vehr.Pin = repmat(Veh.Pin0,1,Vehr.horizon);
Vehr.xt = repmat(Veh.xt0,1,Vehr.horizon+1);
Vehr.xlow0 = Veh.x0(Vehr.xf);

[Vehr] = Call_Level_1_Controller(Vehr, plot_, time);

%% Test S1r Controller
S1r.x0 = S1r.x0;
S1r.Pin = repmat(S1.Pin0,1,S1r.horizon);
S1r.xt = repmat(S1.xt0,1,S1r.horizon+1);
S1r.xdotDes = zeros(max(size(S1r.Zup,1),1),S1r.horizon);
S1r.PoutDes = zeros(max(size(S1r.Zout,1),1),S1r.horizon);
S1r.xlowDes = S1r.x0(S1r.xlow);
S1r.xlow0 = S1.x0(S1r.xf);

[S1r] = Call_Level_i_Controller(S1r, plot_, time);

%% Test S2r Controller
S2r.x0 = S2r.x0;
S2r.Pin = repmat(S2.Pin0,1,S2r.horizon);
S2r.xt = repmat(S2.xt0,1,S2r.horizon+1);
S2r.xdotDes = zeros(max(size(S2r.Zup,1),1),S2r.horizon);
S2r.PoutDes = zeros(max(size(S2r.Zout,1),1),S2r.horizon);
S2r.xlowDes = S2r.x0(S2r.xlow);
S2r.xlow0 = S2.x0(S2r.xf);

[S2r] = Call_Level_i_Controller(S2r, plot_, time);

%% Test SS1 Controller
SS1.x0 = SS1.x0;
SS1.Pin = repmat(SS1.Pin0,1,SS1.horizon);
SS1.xt = repmat(SS1.xt0,1,SS1.horizon);
SS1.xdotDes = zeros(max(size(SS1.Zup,1),1),SS1.horizon);
SS1.PoutDes = zeros(max(size(SS1.Zout,1),1),SS1.horizon);

 156

SS1.xlowDes = SS1.x0(SS1.xlow);

[SS1] = Call_Level_N_Controller(SS1, plot_, time);

%% Test SS2 Controller
SS2.x0 = SS2.x0;
SS2.Pin = repmat(SS2.Pin0,1,SS2.horizon);
SS2.xt = repmat(SS2.xt0,1,SS2.horizon);
SS2.xdotDes = zeros(max(size(SS2.Zup,1),1),SS2.horizon);
SS2.PoutDes = zeros(max(size(SS2.Zout,1),1),SS2.horizon);
SS2.xlowDes = 0;

[SS2] = Call_Level_N_Controller(SS2, plot_, time);

%% Test SS3 Controller
SS3.x0 = SS3.x0;
SS3.Pin = repmat(SS3.Pin0,1,SS3.horizon);
SS3.xt = repmat(SS3.xt0,1,SS3.horizon);
SS3.xdotDes = zeros(max(size(SS3.Zup,1),1),SS3.horizon);
SS3.PoutDes = zeros(max(size(SS3.Zout,1),1),SS3.horizon);
SS3.xlowDes = 0;

[SS3] = Call_Level_N_Controller(SS3, plot_, time);

%% Test SS4 Controller
SS4.x0 = SS4.x0;
SS4.Pin = repmat(SS4.Pin0,1,SS4.horizon);
SS4.xt = repmat(SS4.xt0,1,SS4.horizon);
SS4.xdotDes = zeros(max(size(SS4.Zup,1),1),SS4.horizon);
SS4.PoutDes = zeros(max(size(SS4.Zout,1),1),SS4.horizon);
SS4.xlowDes = SS4.x0(SS4.xlow);

[SS4] = Call_Level_N_Controller(SS4, plot_, time);

A.2 Sys_Gen.m

%% System Parameters
% Name of system
Sys.Name = 'Sys';
% Number of vertices
Sys.Nv = 12; % Number of vertices
Sys.Ne = 18; % Number of edges
Sys.Ns = 2; % Number of sources
Sys.Nt = 2; % Numper of sinks
Sys.Nvs = 2; % Number of slow vertices (First states in vector)
Sys.Nvm = 5; % Number of medium vertices (middle states in vector)
Sys.Nvf = 5; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
Sys.xin = [3;4];
% Discrete update rate
Sys.DT = 1;

%% Edge matrix
% (row i corresponds to edge i, first column is tail vertex,

 157

% second colum is head vertex)
% (sink vertices numbers are [Sys.Nv+1 : Sys.Nv+Sys.Nt])
Sys.e = [3 8;
 3 9;
 9 8;
 9 10;
 4 10;
 4 1;
 1 10;
 8 11;
 10 7;
 11 2;
 11 5;
 2 5;
 5 13;
 6 11;
 7 6;
 7 12;
 12 6;
 12 14];

%% Capacitance Vector
Sys.Caps = [1000*ones(Sys.Nvs,1);100*ones(Sys.Nvm,1);10*ones(Sys.Nvf,1)];

%% Edge Parameters
Sys.a = ones(Sys.Ne,1); % Tail coefficient
Sys.b = ones(Sys.Ne,1); % Head coefficient
Sys.c = ones(Sys.Ne,1); % Input coefficient

%% Initial Conditions
Sys.x0 = zeros(Sys.Nv,1);
Sys.u0 = zeros(Sys.Ne,1);
Sys.xt0 = zeros(Sys.Nt,1);
Sys.Pin0 = zeros(Sys.Ns,1);

%% Constraints
Sys.x_max = ones(Sys.Nv,1);
Sys.x_min = -Sys.x_max;
Sys.u_max = ones(Sys.Ne,1);
Sys.u_min = -Sys.u_max;

% End of user specified information
%% Incidence Matrix
Sys.M = zeros(Sys.Nv+Sys.Nt,Sys.Ne);
for i = 1:Sys.Ne;
 Sys.M(Sys.e(i,1),i) = 1;
 Sys.M(Sys.e(i,2),i) = -1;
end
clear i

Sys.M_upper = Sys.M(1:Sys.Nv,:); % System dynamics
Sys.M_lower = Sys.M(Sys.Nv+1:end,:); % Sink states
Sys.M_s = Sys.M_upper(1:Sys.Nvs,:); % Slow states
Sys.M_m = Sys.M_upper(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:); % Medium states

 158

Sys.M_f = Sys.M_upper(1+Sys.Nvs+Sys.Nvm:end,:); % Fast states

%% Weighted Incidence Matrix
Sys.Mab = zeros(Sys.Nv+Sys.Nt,Sys.Ne);
for i = 1:Sys.Ne;
 Sys.Mab(Sys.e(i,1),i) = Sys.a(i);
 Sys.Mab(Sys.e(i,2),i) = -Sys.b(i);
end
clear i

Sys.Mab_upper = Sys.Mab(1:Sys.Nv,:); % System dynamics
Sys.Mab_lower = Sys.Mab(Sys.Nv+1:end,:); % Sink states
Sys.Mab_s = Sys.Mab_upper(1:Sys.Nvs,:); % Slow states
Sys.Mab_m = Sys.Mab_upper(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:); % Medium states
Sys.Mab_f = Sys.Mab_upper(1+Sys.Nvs+Sys.Nvm:end,:); % Fast states

%% Input Vector
Sys.D = zeros(Sys.Nv,Sys.Ns);
for i = 1:Sys.Ns
 Sys.D(Sys.xin(i),i) = 1;
end
clear i
Sys.D_s = Sys.D(1:Sys.Nvs,:);
Sys.D_m = Sys.D(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:);
Sys.D_f = Sys.D(1+Sys.Nvs+Sys.Nvm:end,:);

%% System Dynamics
% Continuous
Sys.A_c = diag(1./Sys.Caps)*(-Sys.M_upper*Sys.Mab_upper');
Sys.B_c = diag(1./Sys.Caps)*(-Sys.M_upper);
Sys.beta = diag(Sys.c);
Sys.V_c1 = diag(1./Sys.Caps)*(Sys.D);
Sys.V_c2 = diag(1./Sys.Caps)*(-Sys.M_upper*Sys.Mab_lower');
Sys.V_c3 = diag(1./Sys.Caps)*(-Sys.M_upper);
% Discrete
Sys.A = eye(Sys.Nv)+Sys.DT*Sys.A_c;
Sys.B = Sys.DT*Sys.B_c;
Sys.V1 = Sys.DT*Sys.V_c1;
Sys.V2 = Sys.DT*Sys.V_c2;
Sys.V3 = Sys.DT*Sys.V_c3;
% Initial power flow
Sys.P0 = Sys.Mab_upper'*Sys.x0+Sys.Mab_lower'*Sys.xt0+diag(Sys.c)*Sys.u0;

A.3 SS1_Gen.m

%% SS1 Parameters
% Name of system
SS1.Name = 'SS1';
% Number of vertices
SS1.Nv = 3; % Number of vertices
SS1.Ne = 5; % Number of edges
SS1.Ns = 1; % Number of sources
SS1.Nt = 2; % Numper of sinks
SS1.Nvs = 0; % Number of slow vertices (First states in vector)

 159

SS1.Nvm = 1; % Number of medium vertices (middle states in vector)
SS1.Nvf = 2; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
SS1.xin = [1];
% Discrete update rate
SS1.DT = 1;
% Relation to full system
SS1.Sys_Vs = [3;8;9]; % Indices of vertices in full system
SS1.Sys_Es = [1;2;3;4;8]; % Indices of edges in full system
SS1.xt0 = Sys.x0([10 11]); % Initial sink states
SS1.Pin0 = Sys.Pin0(1); % Initial inlet power flows

%% Edge matrix
SS1.e = [1 2;
 1 3;
 3 2;
 3 4;
 2 5];

%% Generate remaining subsystem values
[SS1] = Generic_Subsystem_Gen(SS1,Sys);

A.4 SS2_Gen.m

%% SS2 Parameters
% Name of system
SS2.Name = 'SS2';
% Number of vertices
SS2.Nv = 3; % Number of vertices
SS2.Ne = 4; % Number of edges
SS2.Ns = 2; % Number of sources
SS2.Nt = 1; % Numper of sinks
SS2.Nvs = 1; % Number of slow vertices (First states in vector)
SS2.Nvm = 1; % Number of medium vertices (middle states in vector)
SS2.Nvf = 1; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
SS2.xin = [2;3];
% Discrete update rate
SS2.DT = 1;
% Relation to full system
SS2.Sys_Vs = [1;4;10]; % Indices of states in full system
SS2.Sys_Es = [5;6;7;9]; % Indices of edges in full system
SS2.xt0 = Sys.x0(7); % Initial sink states
SS2.Pin0 = [Sys.Pin0(2);Sys.P0(4)]; % Initial inlet power flows

%% Edge matrix
SS2.e = [2 3;
 2 1;
 1 3;
 3 4];

%% Generate remaining subsystem values
[SS2] = Generic_Subsystem_Gen(SS2,Sys);

 160

A.5 SS3_Gen.m

%% SS3 Parameters
% Name of system
SS3.Name = 'SS3';
% Number of vertices
SS3.Nv = 3; % Number of vertices
SS3.Ne = 4; % Number of edges
SS3.Ns = 2; % Number of sources
SS3.Nt = 1; % Numper of sinks
SS3.Nvs = 1; % Number of slow vertices (First states in vector)
SS3.Nvm = 1; % Number of medium vertices (middle states in vector)
SS3.Nvf = 1; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
SS3.xin = [3;3];
% Discrete update rate
SS3.DT = 1;
% Relation to full system
SS3.Sys_Vs = [2;5;11]; % Indices of states in full system
SS3.Sys_Es = [10;11;12;13]; % Indices of edges in full system
SS3.xt0 = Sys.xt0(1); % Initial sink states
SS3.Pin0 = [Sys.P0(8);Sys.P0(14)]; % Initial inlet power flows

%% Edge matrix
SS3.e = [3 1;
 3 2;
 1 2;
 2 4];

%% Generate remaining subsystem values
[SS3] = Generic_Subsystem_Gen(SS3,Sys);

A.6 SS4_Gen.m

%% SS4 Parameters
% Name of system
SS4.Name = 'SS4';
% Number of vertices
SS4.Nv = 3; % Number of vertices
SS4.Ne = 5; % Number of edges
SS4.Ns = 1; % Number of sources
SS4.Nt = 2; % Numper of sinks
SS4.Nvs = 0; % Number of slow vertices (First states in vector)
SS4.Nvm = 2; % Number of medium vertices (middle states in vector)
SS4.Nvf = 1; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
SS4.xin = [2];
% Discrete update rate
SS4.DT = 1;
% Relation to full system
SS4.Sys_Vs = [6;7;12]; % Indices of states in full system
SS4.Sys_Es = [15;16;17;14;18]; % Indices of edges in full system
SS4.xt0 = [Sys.x0(11);Sys.xt0(2)]; % Initial sink states
SS4.Pin0 = Sys.P0(9); % Initial inlet power flows

 161

%% Edge matrix
SS4.e = [2 1;
 2 3;
 3 1;
 1 4;
 3 5];

%% Generate remaining subsystem values
[SS4] = Generic_Subsystem_Gen(SS4,Sys);

A.7 S1_Gen.m

%% S1 Parameters
% Name of system
S1.Name = 'S1';
% Number of vertices
S1.Nv = 6; % Number of vertices
S1.Ne = 9; % Number of edges
S1.Ns = 2; % Number of sources
S1.Nt = 2; % Numper of sinks
S1.Nvs = 1; % Number of slow vertices (First states in vector)
S1.Nvm = 2; % Number of medium vertices (middle states in vector)
S1.Nvf = 3; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
S1.xin = [2;3];
% Discrete update rate
S1.DT = 10;
% Relation to full system
S1.Sys_Vs = [1;3;4;8;9;10]; % Indices of states in full system
S1.Sys_Es = [1:9]'; % Indices of edges in full system
S1.xt0 = Sys.x0([11 7]); % Initial sink states
S1.Pin0 = Sys.Pin0; % Initial inlet power flows

%% Edge matrix
S1.e = [2 4;
 2 5;
 5 4;
 5 6;
 3 6;
 3 1;
 1 6;
 4 7;
 6 8];

%% Generate remaining subsystem values
[S1] = Generic_Subsystem_Gen(S1,Sys);

A.8 S1r_Gen.m

%% S1r Parameters
% Name of system
S1r.Name = 'S1r';
% Relation to nominal system
S1r.Sys_Es = 1:S1.Ne; % Keep all edges
S1r.Sys_Vs = [1 3 4 10]; % Keep slow and medium states and head of subsystem

 162

%% Generate reduced subsystem
[S1r] = Generic_Reduced_Subsystem_Gen(S1r,S1);

A.9 S2_Gen.m

%% S2 Parameters
% Name of system
S2.Name = 'S2';
% Number of vertices
S2.Nv = 6; % Number of vertices
S2.Ne = 9; % Number of edges
S2.Ns = 2; % Number of sources
S2.Nt = 2; % Numper of sinks
S2.Nvs = 1; % Number of slow vertices (First states in vector)
S2.Nvm = 3; % Number of medium vertices (middle states in vector)
S2.Nvf = 2; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
S2.xin = [5;4];
% Discrete update rate
S2.DT = 10;
% Relation to full system
S2.Sys_Vs = [2;5;6;7;11;12]; % Indices of states in full system
S2.Sys_Es = [10:18]'; % Indices of edges in full system
S2.xt0 = Sys.xt0; % Initial sink states
S2.Pin0 = [Sys.P0(8);Sys.P0(9)]; % Initial inlet power flows

%% Edge matrix
S2.e = [5 1;
 5 2;
 1 2;
 2 7;
 3 5;
 4 3;
 4 6;
 6 3;
 6 8];

%% Generate remaining subsystem values
[S2] = Generic_Subsystem_Gen(S2,Sys);

A.10 S2r_Gen.m

%% S2r Parameters
% Name of system
S2r.Name = 'S2r';
% Relation to nominal system
S2r.Sys_Es = 1:S2.Ne; % Keep all edges
S2r.Sys_Vs = [2 5 6 7 11];% Keep slow and medium states and head of subsystem

%% Generate reduced subsystem
[S2r] = Generic_Reduced_Subsystem_Gen(S2r,S2);

A.11 Veh_Gen.m

 163

%% Veh Parameters
% Name of system
Veh.Name = 'Veh';
% Number of vertices
Veh.Nv = 12; % Number of vertices
Veh.Ne = 18; % Number of edges
Veh.Ns = 2; % Number of sources
Veh.Nt = 2; % Numper of sinks
Veh.Nvs = 2; % Number of slow vertices (First states in vector)
Veh.Nvm = 5; % Number of medium vertices (middle states in vector)
Veh.Nvf = 5; % Number of fast vertices (Last states in vector)
% Head states of inlet power flows
Veh.xin = [3;4];
% Discrete update rate
Veh.DT = 100;
% Relation to full system
Veh.Sys_Vs = [1:12]'; % Indices of states in full system
Veh.Sys_Es = [1:18]'; % Indices of edges in full system
Veh.xt0 = Sys.xt0; % Initial sink states
Veh.Pin0 = Sys.Pin0; % Initial inlet power flows

%% Edge matrix
Veh.e = [3 8;
 3 9;
 9 8;
 9 10;
 4 10;
 4 1;
 1 10;
 8 11;
 10 7;
 11 2;
 11 5;
 2 5;
 5 13;
 6 11;
 7 6;
 7 12;
 12 6;
 12 14];

%% Generate remaining subsystem values
[Veh] = Generic_Subsystem_Gen(Veh,Sys);

A.12 Vehr_Gen.m

%% Vehr Parameters
% Name of system
Vehr.Name = 'Vehr';
% Relation to nominal system
Vehr.Sys_Es = 1:Veh.Ne; % Keep all edges
Vehr.Sys_Vs = [1 2 7 11]; % Keep slow states and head of system

%% Generate reduced subsystem
[Vehr] = Generic_Reduced_Subsystem_Gen(Vehr,Veh);

 164

A.13 Generic_Subsystem_Gen.m

function [Output] = Generic_Subsystem_Gen(Input,Sys)

Output = Input;

%% Capacitance Vector
Output.Caps = Sys.Caps(Output.Sys_Vs);

%% Edge Parameters
Output.a = Sys.a(Output.Sys_Es); % Tail coefficient
Output.b = Sys.b(Output.Sys_Es); % Head coefficient
Output.c = Sys.c(Output.Sys_Es); % Input coefficient

%% Incidence Matrix
Output.M = zeros(Output.Nv+Output.Nt,Output.Ne);
for i = 1:Output.Ne;
 Output.M(Output.e(i,1),i) = 1;
 Output.M(Output.e(i,2),i) = -1;
end
clear i

Output.M_upper = Output.M(1:Output.Nv,:); % Outputtem dynamics
Output.M_lower = Output.M(Output.Nv+1:end,:); % Sink states
% Incidence matrix for slow, medium, and fast states
Output.M_s = Output.M_upper(1:Output.Nvs,:);
Output.M_m = Output.M_upper(1+Output.Nvs:Output.Nvs+Output.Nvm,:);
Output.M_f = Output.M_upper(1+Output.Nvs+Output.Nvm:end,:);

%% Weighted Incidence Matrix
Output.Mab = zeros(Output.Nv+Output.Nt,Output.Ne);
for i = 1:Output.Ne;
 Output.Mab(Output.e(i,1),i) = Output.a(i);
 Output.Mab(Output.e(i,2),i) = -Output.b(i);
end
clear i

Output.Mab_upper = Output.Mab(1:Output.Nv,:); % Outputtem dynamics
Output.Mab_lower = Output.Mab(Output.Nv+1:end,:); % Sink states
% Weighted incidence matrix for slow, medium, and fast states
Output.Mab_s = Output.Mab_upper(1:Output.Nvs,:);
Output.Mab_m = Output.Mab_upper(1+Output.Nvs:Output.Nvs+Output.Nvm,:);
Output.Mab_f = Output.Mab_upper(1+Output.Nvs+Output.Nvm:end,:);

%% Input Vector
Output.D = zeros(Output.Nv,Output.Ns);
for i = 1:Output.Ns
 Output.D(Output.xin(i),i) = 1;
end
clear i
Output.D_s = Output.D(1:Output.Nvs,:);
Output.D_m = Output.D(1+Output.Nvs:Output.Nvs+Output.Nvm,:);
Output.D_f = Output.D(1+Output.Nvs+Output.Nvm:end,:);

 165

%% Outputtem Dynamics
% Continuous
Output.A_c = diag(1./Output.Caps)*(-Output.M_upper*Output.Mab_upper');
Output.B_c = diag(1./Output.Caps)*(-Output.M_upper);
Output.beta = diag(Output.c);
Output.V_c1 = diag(1./Output.Caps)*(Output.D);
Output.V_c2 = diag(1./Output.Caps)*(-Output.M_upper*Output.Mab_lower');
% Discrete
Output.A = eye(Output.Nv)+Output.DT*Output.A_c;
Output.B = Output.DT*Output.B_c;
Output.V1 = Output.DT*Output.V_c1;
Output.V2 = Output.DT*Output.V_c2;
Output.A0 = eye(Output.Nv);

%% Model Reduction Matrices
Output.T = eye(Output.Ne);
Output.Y = zeros(Output.Ne,Output.Ns);

%% Initial Conditions
Output.x0 = Sys.x0(Output.Sys_Vs);
Output.u0 = Sys.u0(Output.Sys_Es);
Output.P0 = Sys.P0(Output.Sys_Es);

%% Constraints
Output.x_max = Sys.x_max(Output.Sys_Vs);
Output.x_min = -Output.x_max;
Output.u_max = Sys.u_max(Output.Sys_Es);
Output.u_min = -Output.u_max;

end

A.14 Generic_Reduced_Subsystem_Gen.m

function [Output] = Generic_Reduced_Subsystem_Gen(Input,Full)

Output = Input;

%% Number of vertices
Output.Nv = length(Output.Sys_Vs); % Number of reduced vertices
Output.Ne = Full.Ne-(Full.Nv-Output.Nv); % Number of reduced edges
Output.Ns = Full.Ns; % Number of sources
Output.Nt = Full.Nt; % Numper of sinks
Output.Nvs = Full.Nv-Full.Nvf-Full.Nvm; % Number os slow states
% Discrete update rate
Output.DT = Full.DT;
% Determine indices for vertices of reduced matrix
[trash,Output.Full_Vs] = ismember(Output.Sys_Vs,Full.Sys_Vs);
% Matrices for reduced power flow equation
Output.xf = setdiff(1:Full.Nv,Output.Full_Vs); % Fast vertices
[Output.R,Output.jb] = rref([Full.M(Output.xf,:) Full.D(Output.xf,:)]);
Output.Sys_Es = setdiff(1:Full.Ne,Output.jb)';
Output.F = -Output.R(:,Output.Sys_Es);
Output.T = zeros(Full.Ne,Output.Ne);

 166

for i = 1:Output.Ne
 Output.T(Output.Sys_Es(i),i) = 1;
end
for i = 1:size(Output.F,1)
 Output.T(Output.jb(i),:) = Output.F(i,:);
end
Output.G = Output.R(:,end-Output.Ns+1:end);
Output.Y = zeros(Full.Ne,Full.Ns);
for i = 1:size(Output.F,1)
 Output.Y(Output.jb(i),:) = Output.G(i,:);
end
% Reduced power flow matrices
Output.Br_hat = Full.B(Output.Full_Vs,:)*Output.T;
Output.Vr_hat = Full.V1(Output.Full_Vs,:)+Full.B(Output.Full_Vs,:)*Output.Y;

% Upper incidence matrix for reduced system
Output.M_upper = Full.M(Output.Full_Vs,:);
% Input Matrix for reduced system
Output.D = Full.D(Output.Full_Vs,:);
% Weighted incidence matrix for full system
Output.Mab = Full.Mab;
% Weighted incidence matrix corresponding to fast states
Output.Mfast = Full.Mab(Output.xf,:);
% Vertex capacitances
Output.Caps = Full.Caps(Output.Full_Vs);

% State Constraints
Output.x_max = Full.x_max(Output.Full_Vs);
Output.x_min = Full.x_min(Output.Full_Vs);

% Input Constraints
Output.u_max = Full.u_max;
Output.u_min = Full.u_min;

% Initial Conditions
Output.x0 = Full.x0(Output.Full_Vs);
Output.u0 = Full.u0;

end

A.15 Nominal_Constraints.m

function Output = Nominal_Constraints(Input)

Output = Input;

% State Constraints
Output.Set_X = Polyhedron('lb',Output.x_min,'ub',Output.x_max);
% Input Constraints
Output.Set_U = Polyhedron('lb',Output.u_min,'ub',Output.u_max);

end

 167

A.16 Candidate_Controller.m

function [Output] = Candidate_Controller(Input)

Output = Input;

% Candidate control law
Output.K = -pinv(Output.B);

end

A.17 Constraint_Tightening.m

function Output = Constraint_Tightening(Input)

Output = Input;

% Robust state set
Output.Set_X_robust = minus(Output.Set_X,Output.Set_E);
% Robust input set
Output.Set_U_robust = minus(Output.Set_U,...
 affineMap(Output.Set_dP,inv(Output.beta)));
Output.Set_U_robust = minus(Output.Set_U_robust,...
 affineMap(Output.Set_E,-inv(Output.beta)*Output.Mab_upper'));
Output.Set_U_robust = minus(Output.Set_U_robust,...
 affineMap(Output.Set_dXt,-inv(Output.beta)*Output.Mab_lower'));
Output.Set_X_robust.minHRep; % Minimum representation of constraints
Output.Set_U_robust.minHRep; % Minimum representation of constraints

% Input Set constraint reordering
indexes = [];
for i = 1:size(Output.Set_X_robust.H,2)-1
 indexes = [indexes;find(Output.Set_X_robust.H(:,i) == 1)];
end
for i = 1:size(Output.Set_X_robust.H,2)-1
 indexes = [indexes;find(Output.Set_X_robust.H(:,i) == -1)];
end
Output.Set_X_robust=Polyhedron('A',Output.Set_X_robust.H(indexes,1:end-1),...
 'b',Output.Set_X_robust.H(indexes,end));

% Input Set constraint reordering
indexes = [];
for i = 1:size(Output.Set_U_robust.H,2)-1
 indexes = [indexes;find(Output.Set_U_robust.H(:,i) == 1)];
end
for i = 1:size(Output.Set_U_robust.H,2)-1
 indexes = [indexes;find(Output.Set_U_robust.H(:,i) == -1)];
end
Output.Set_U_robust=Polyhedron('A',Output.Set_U_robust.H(indexes,1:end-1),...
 'b',Output.Set_U_robust.H(indexes,end));

end

A.18 Tracking_Constraint_Matrices.m

 168

function Output = Tracking_Constraint_Matrices(Input,Full,UpperReduced)

Output = Input;

% Find vertices contained in reduced upper level system
[trash,Output.Track] = ismember(intersect(Output.Sys_Vs,...
 UpperReduced.Sys_Vs),Output.Sys_Vs);
% Generate state tracking matrix
Output.Zup = zeros(length(Output.Track),Output.Nv);
for i = 1:length(Output.Track)
 Output.Zup(i,Output.Track(i)) = 1;
end
% Generate outlet power tracking matrix
Output.Zout = zeros(Output.Nt,size(Output.T,1));
j = 1;
for i = 1:Full.Ne
 if Full.e(i,2) > Full.Nv
 Output.Zout(j,i) = 1;
 j = j + 1;
 end
end
% Generate fast state constraint matrix
Output.xlow = setdiff(1:Output.Nv,Output.Track);
Output.Zlow = zeros(length(Output.xlow),Output.Nv);
for i = 1:length(Output.xlow)
 Output.Zlow(i,Output.xlow(i)) = 1;
end

end

A.19 Robust_Constraints.m

function Output = Robust_Constraints(Input,bound)

Output = Input;
% Robust state set
Output.Set_X_robust = Polyhedron('lb',Output.x_min_robust,...
 'ub',Output.x_max_robust);
% Robust input set
Output.Set_U_robust = Polyhedron('lb',Output.U_min_robust,...
 'ub',Output.U_max_robust);

% Additional input constraint tightening for lower level tracking error
% Upper bound lower level tracking error
Output.Dx_LL_max = bound*ones(length(Output.xf),1);
% Lower bound lower level tracking error
Output.Dx_LL_min = -Output.Dx_LL_max;
% Generate lower level tracking error set
Output.Set_Dx_LL = Polyhedron('lb',Output.Dx_LL_min,'ub',Output.Dx_LL_max);
% Tighten constraints
Output.Set_U_robust = minus(Output.Set_U_robust,...
 affineMap(Output.Set_Dx_LL,-Output.Mfast'));
Output.Set_U_robust.minHRep; % Minimum representation of constraints

 169

% State Set constraint reordering
indexes = [];
for i = 1:size(Output.Set_X_robust.H,2)-1
 indexes = [indexes;find(Output.Set_X_robust.H(:,i) == 1)];
end
for i = 1:size(Output.Set_X_robust.H,2)-1
 indexes = [indexes;find(Output.Set_X_robust.H(:,i) == -1)];
end
Output.Set_X_robust=Polyhedron('A',Output.Set_X_robust.H(indexes,1:end-1),...
 'b',Output.Set_X_robust.H(indexes,end));

% Input Set constraint reordering
indexes = [];
for i = 1:size(Output.Set_U_robust.H,2)-1
 indexes = [indexes;find(Output.Set_U_robust.H(:,i) == 1)];
end
for i = 1:size(Output.Set_U_robust.H,2)-1
 indexes = [indexes;find(Output.Set_U_robust.H(:,i) == -1)];
end
Output.Set_U_robust=Polyhedron('A',Output.Set_U_robust.H(indexes,1:end-1),...
 'b',Output.Set_U_robust.H(indexes,end));

end

A.20 State_Reordering.m

function Output = State_Reordering(Input,Full)

Output = Input;

% Initial reordering matrix
Output.Z = eye(Full.Nv);
% Identify order of states
[trash,reorder] = ismember([Output.Sys_Vs';...
 setdiff(Full.Sys_Vs,Output.Sys_Vs)],Full.Sys_Vs);
% Reorder matrix
Output.Z = Output.Z(:,reorder);
% Add sink states to matrix
Output.Z = blkdiag(Output.Z,eye(Output.Nt));

end

A.21 Level_1_Controller_Gen.m

function [Output] = Level_1_Controller_Gen(Input, weightings, constraints)

Output = Input;

% Use nominal or robust constraints based on flag
if constraints.robustOn
 Output.x_A = Output.Set_X_robust.H(:,1:end-1);
 Output.x_b = Output.Set_X_robust.H(:,end);
 Output.U_A = Output.Set_U_robust.H(:,1:end-1);
 Output.U_b = Output.Set_U_robust.H(:,end);

 170

else
 Output.x_A = Output.Set_X.H(:,1:end-1);
 Output.x_b = Output.Set_X.H(:,end);
 Output.U_A = Output.Set_U.H(:,1:end-1);
 Output.U_b = Output.Set_U.H(:,end);
end
% Initialize Yalmip variables
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),...
 repmat(1,1,Output.horizon));
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),...
 repmat(1,1,Output.horizon));
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));
xlowDes_ = sdpvar(repmat(length(Output.xf),1,1),...
 repmat(1,1,1));
xlow_ = sdpvar(repmat(length(Output.xf),1,1),...
 repmat(1,1,1));
lambdas_ = sdpvar(repmat(Output.Ns,1,Output.horizon),...
 repmat(1,1,Output.horizon));
lambdat_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));

% Initalize objective function and constraints
objs = 0;
cons = [];

% Formulate optimization problem at each step in the prediction horizon
for k = 1:Output.horizon
 % Define full power flow vector
 P_full = Output.T*P_{k}+Output.Y*diag(lambdas_{k})*Pin_{k};
 % Nominal state tracking
 objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2;
 % Nominal power tracking
 objs = objs + weightings.u*norm(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}] - Output.u0,2)^2;
 % Minimize power
 objs = objs + weightings.u_eff*norm(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}] - Output.u_min,2)^2;
 % Minimize changes to desired disturbances
 objs = objs + 1e6*norm(lambdas_{k}-1,2)^2;
 objs = objs + 1e6*norm(lambdat_{k}-1,2)^2;
 % Constrain system dynamics
 cons = [cons, x_{k+1} == x_{k}+Output.Br_hat*P_{k}+...
 Output.Vr_hat*diag(lambdas_{k})*Pin_{k}];
 % Constrain states
 cons = [cons, Output.x_A*x_{k} <= Output.x_b];
 % Constrain inputs
 cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}]) <= Output.U_b];
 % Constrain inputs for next timestep
 cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*...
 [x_{k+1};xlowDes_;diag(lambdat_{k})*xt_{k+1}]) <= Output.U_b];
 % If low state bounds on, constrain low states to be close to desired

 171

 if constraints.lowerStateBoundsOn
 cons = [cons, -constraints.Dx_LL_max_value/2 <= ...
 (xlow_ - xlowDes_) <= constraints.Dx_LL_max_value/2];
 end
 % Constrain last constant states at end of prediction horizon
 if k == Output.horizon
 cons = [cons, x_{k+1} == x_{k}];
 end
end
opts = sdpsettings('solver','+gurobi');
Output.Controller = optimizer(cons,objs,opts,{x_{1},Pin_{:},xt_{:},xlow_},...
 [x_,P_,lambdas_,lambdat_,{xlowDes_}]);

end

A.22 Level_i_Controller_Gen.m

function [Output] = Level_i_Controller_Gen(Input, weightings, constraints)

Output = Input;

% Use nominal or robust constraints based on flag
if constraints.robustOn
 Output.x_A = Output.Set_X_robust.H(:,1:end-1);
 Output.x_b = Output.Set_X_robust.H(:,end);
 Output.U_A = Output.Set_U_robust.H(:,1:end-1);
 Output.U_b = Output.Set_U_robust.H(:,end);
else
 Output.x_A = Output.Set_X.H(:,1:end-1);
 Output.x_b = Output.Set_X.H(:,end);
 Output.U_A = Output.Set_U.H(:,1:end-1);
 Output.U_b = Output.Set_U.H(:,end);
end
% Initialize Yalmip variables
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),...
 repmat(1,1,Output.horizon));
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),...
 repmat(1,1,Output.horizon));
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));
xdotDes_ = sdpvar(repmat(max(size(Output.Zup,1),1),1,Output.horizon),...
 repmat(1,1,Output.horizon));
PoutDes_ = sdpvar(repmat(max(size(Output.Zout,1),1),1,Output.horizon),...
 repmat(1,1,Output.horizon));
xlowDes_ = sdpvar(repmat(max(size(Output.Zlow,1),1),1,1),repmat(1,1,1));
xlow_ = sdpvar(repmat(max(length(Output.xf),1),1,1),repmat(1,1,1));

% Initalize objective function and constraints
objs = 0;
cons = [];

% Formulate optimization problem at each step in the prediction horizon

 172

for k = 1:Output.horizon
 % Define full power flow vector
 P_full = Output.T*P_{k}+Output.Y*Pin_{k};
 % Nominal state tracking
 objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2;
 % Nominal power tracking
 objs = objs + weightings.u*norm(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlow_;xt_{k}] - Output.u0,2)^2;
 % Minimize power
 objs = objs + weightings.u_eff*norm(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlow_;xt_{k}] - Output.u_min,2)^2;
 % Constrain system dynamics
 cons = [cons, x_{k+1} ==

x_{k}+Output.Br_hat*P_{k}+Output.Vr_hat*Pin_{k}];
 % Constrain states
 cons = [cons, Output.x_A*x_{k} <= Output.x_b];
 % Constrain inputs
 cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*...
 [x_{k};xlow_;xt_{k}]) <= Output.U_b];
 % Constrain inputs for next timestep
 cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*...
 [x_{k+1};xlow_;xt_{k+1}]) <= Output.U_b];
 % If state tracking on, constrain states to track desired trajectories
 if constraints.stateTrackingOn
 cons = [cons, Output.Zup*inv(diag(Output.Caps))*...
 (-Output.M_upper*P_full+Output.D*Pin_{k}) == xdotDes_{k}];
 end
 % If outlet power tracking on, constrain outlet powers to track desired
 if constraints.pOutTrackingOn
 cons = [cons, Output.Zout*P_full == PoutDes_{k}];
 end
 % If low state bounds on, constrain low states to be close to desired
 if constraints.lowerStateBoundsOn
 cons = [cons, -constraints.Dx_LL_max_value/2 <= ...
 (Output.Zlow*x_{k+1} - xlowDes_) <= constraints.Dx_LL_max_value/2];
 end
end
opts = sdpsettings('solver','+gurobi');
Output.Controller = optimizer(cons,objs,opts,...
 {x_{1},Pin_{:},xt_{:},xdotDes_{:},PoutDes_{:},xlowDes_,xlow_},[x_,P_]);

end

A.23 Level_N_Controller_Gen.m

function [Output] = Level_N_Controller_Gen(Input, weightings, constraints

)

Output = Input;

% Use nominal or robust constraints based on flag
if constraints.robustOn
 Output.x_A = Output.Set_X_robust.H(:,1:end-1);
 Output.x_b = Output.Set_X_robust.H(:,end);
 Output.U_A = Output.Set_U_robust.H(:,1:end-1);

 173

 Output.U_b = Output.Set_U_robust.H(:,end);
else
 Output.x_A = Output.Set_X.H(:,1:end-1);
 Output.x_b = Output.Set_X.H(:,end);
 Output.U_A = Output.Set_U.H(:,1:end-1);
 Output.U_b = Output.Set_U.H(:,end);
end
% Initialize Yalmip variables
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),...
 repmat(1,1,Output.horizon+1));
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),...
 repmat(1,1,Output.horizon));
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),...
 repmat(1,1,Output.horizon));
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon),...
 repmat(1,1,Output.horizon));
xdotDes_ = sdpvar(repmat(max(size(Output.Zup,1),1),1,Output.horizon),...
 repmat(1,1,Output.horizon));
PoutDes_ = sdpvar(repmat(max(size(Output.Zout,1),1),1,Output.horizon),...
 repmat(1,1,Output.horizon));
xlowDes_ = sdpvar(repmat(max(size(Output.Zlow,1),1),1,1),repmat(1,1,1));

% Initalize objective function and constraints
objs = 0;
cons = [];

% Formulate optimization problem at each step in the prediction horizon
for k = 1:Output.horizon
 % Nominal state tracking
 objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2;
 % Nominal power tracking
 objs = objs + weightings.u*norm(P_{k}-Output.Mab'*...
 [x_{k};xt_{k}] - Output.u0,2)^2;
 % Minimize power
 objs = objs + weightings.u_eff*norm(P_{k}-Output.Mab'*...
 [x_{k};xt_{k}] - Output.u_min,2)^2;
 % Constrain system dynamics
 cons = [cons, x_{k+1} == x_{k}+Output.B*P_{k}+Output.V1*Pin_{k}];
 % Constrain states
 cons = [cons, Output.x_A*x_{k} <= Output.x_b];
 % Constrain inputs
 cons = [cons, Output.U_A*(P_{k}-Output.Mab'*...
 [x_{k};xt_{k}]) <= Output.U_b];
 % If state tracking on, constrain states to track desired trajectories
 if constraints.stateTrackingOn
 cons = [cons, Output.Zup*inv(diag(Output.Caps))*...
 (-Output.M_upper*P_{k}+Output.D*Pin_{k}) == xdotDes_{k}];
 end
 % If outlet power tracking on, constrain outlet powers to track desired
 if constraints.pOutTrackingOn
 cons = [cons, Output.Zout*P_{k} == PoutDes_{k}];
 end
 % If low state bounds on, constrain low states to be close to desired
 if constraints.lowerStateBoundsOn
 cons = [cons, -constraints.Dx_LL_max_value/2 <= ...

 174

 (Output.Zlow*x_{k+1} - xlowDes_) <= constraints.Dx_LL_max_value/2];
 end
end
opts = sdpsettings('solver','+gurobi');%,'verbose',2);
Output.Controller = optimizer(cons,objs,opts,...
 {x_{1},Pin_{:},xt_{:},xdotDes_{:},PoutDes_{:},xlowDes_},[x_,P_]);

end

A.24 Call_Level_1_Controller.m

function [Output] = Call_Level_1_Controller(Input, plot, time)

Output = Input;

% Configure inputs to the controller
Inputs = cell(1,1+2*Output.horizon+1+1);
Inputs(1) = {Output.x0};
Inputs(2:Output.horizon+1) = ...
 mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon));
Inputs(Output.horizon+2:2*Output.horizon+2) = ...
 mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon+1));
Inputs(2*Output.horizon+3) = {Output.xlow0};

% Start timing controller
if time == 1
 tic;
end
% Call controller
[Outputs,Output.feasible] = Output.Controller{Inputs};
% Record controller solve time
if time == 1
 Output.T_calc = toc;
end
% Display if optimization problem was infeasible
if Output.feasible ~= 0
 disp([Output.Name, ' infeasible at time = ', num2str(Output.Time),...
 ' with code = ', num2str(Output.feasible)])
end
% Output variables
Output.x = cell2mat(Outputs(:,1:Output.horizon+1));
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1));
Output.lambdas = cell2mat(Outputs(:,2*Output.horizon+2:3*Output.horizon+1));
Output.lambdat = cell2mat(Outputs(:,3*Output.horizon+2:4*Output.horizon+2));
Output.xlowDes = cell2mat(Outputs(:,4*Output.horizon+3));
Output.x(:,1) = Output.x0;

if plot == 1
 figure;
 subplot(4,1,1);stairs(Output.x(:,1:end-1)')
 subplot(4,1,2);stairs(Output.P')
 subplot(4,1,3);stairs(Output.lambdas')
 subplot(4,1,4);stairs(Output.lambdat')
end

 175

end

A.25 Call_Level_i_Controller.m

function [Output] = Call_Level_i_Controller(Input, plot, time)

Output = Input;

% Configure inputs to the controller
Inputs = cell(1,1+4*Output.horizon+1+1+1);
Inputs(1) = {Output.x0};
Inputs(2:Output.horizon+1) = ...
 mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon));
Inputs(Output.horizon+2:2*Output.horizon+2) = ...
 mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon+1));
Inputs(2*Output.horizon+3:3*Output.horizon+2) = ...
 mat2cell(Output.xdotDes,max(size(Output.Zup,1),1),ones(1,Output.horizon));
Inputs(3*Output.horizon+3:4*Output.horizon+2) = ...

mat2cell(Output.PoutDes,max(size(Output.Zout,1),1),ones(1,Output.horizon));
Inputs(4*Output.horizon+3) = {Output.xlowDes};
Inputs(4*Output.horizon+4) = {Output.xlow0};

% Start timing controller
if time == 1
 tic;
end
% Call controller
[Outputs,Output.feasible] = Output.Controller{Inputs};
% Record controller solve time
if time == 1
 Output.T_calc = toc;
end
% Display if optimization problem was infeasible
if Output.feasible ~= 0
 disp([Output.Name, ' infeasible at time = ', num2str(Output.Time),...
 ' with code = ', num2str(Output.feasible)])
end
% Output variables
Output.x = cell2mat(Outputs(:,1:Output.horizon+1));
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1));
Output.x(:,1) = Output.x0;

if plot == 1
 figure;
 subplot(2,1,1);stairs(Output.x(:,1:end-1)')
 subplot(2,1,2);stairs(Output.P')
end

end

A.26 Call_Level_N_Controller.m

 176

function [Output] = Call_Level_N_Controller(Input, plot, time)

Output = Input;

% Configure inputs to the controller
Inputs = cell(1,1+4*Output.horizon+1);
Inputs(1) = {Output.x0};
Inputs(2:Output.horizon+1) = ...
 mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon));
Inputs(Output.horizon+2:2*Output.horizon+1) = ...
 mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon));
Inputs(2*Output.horizon+2:3*Output.horizon+1) = ...
 mat2cell(Output.xdotDes,max(size(Output.Zup,1),1),ones(1,Output.horizon));
Inputs(3*Output.horizon+2:4*Output.horizon+1) = ...

mat2cell(Output.PoutDes,max(size(Output.Zout,1),1),ones(1,Output.horizon));
Inputs(4*Output.horizon+2) = {Output.xlowDes};
% Start timing controller
if time == 1
 tic;
end
% Call controller
[Outputs,Output.feasible] = Output.Controller{Inputs};
% Record controller solve time
if time == 1
 Output.T_calc = toc;
end
% Display if optimization problem was infeasible
if Output.feasible ~= 0
 disp([Output.Name, ' infeasible at time = ', num2str(Output.Time), ...
 ' with code = ', num2str(Output.feasible)])
end
% Output variables
Output.x = cell2mat(Outputs(:,1:Output.horizon+1));
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1));
Output.x(:,1) = Output.x0;

if plot == 1
 figure;
 subplot(2,1,1);stairs(Output.x(:,1:end-1)')
 subplot(2,1,2);stairs(Output.P')
end

end

A.27 Three_Level_Sim.slx

 177

Figure A.3 Simulink model used to simulate the robust hierarchical controller.

A.28 Three_Level_Controller.m

function out = Three_Level_Controller(in)

% Define persistent variables
persistent Sys SS1 SS2 SS3 SS4 S1r S2r Vehr x_pred plot_ time i_S i_SS...
 Pin_V xt_V Pfull_V x_V xdot_V...
 Pin_S1 xt_S1 Pfull_S1 x_S1 xdot_S1...
 Pin_S2 xt_S2 Pfull_S2 x_S2 xdot_S2

% Time
t = in(1);
% Load variables from work space
if t == 0
 Sys = evalin('base','Sys');
 SS1 = evalin('base','SS1');
 SS2 = evalin('base','SS2');

 178

 SS3 = evalin('base','SS3');
 SS4 = evalin('base','SS4');
 S1r = evalin('base','S1r');
 S2r = evalin('base','S2r');
 Vehr = evalin('base','Vehr');
 x_pred = Sys.x0;
 plot_ = 0; time = 1;
 i_S = 0;
 i_SS = 0;
end
% Length of input vectors
l_x0 = Sys.Nv;
l_Pin = Sys.Ns*Vehr.horizon;
l_xt = Sys.Nt*(Vehr.horizon+1);
l_xt0 = Sys.Nt;
% Indices for each input vector
t1 = 2; t2 = t1+l_x0-1;
t3 = t2+1; t4 = t3+l_Pin-1;
t5 = t4+1; t6 = t5+l_xt-1;
t7 = t6+1; t8 = t7+l_xt0-1;
% Define inputs
x0 = in(t1:t2);
Pin = reshape(in(t3:t4),Vehr.horizon,Sys.Ns)';
xt = reshape(in(t5:t6),Vehr.horizon+1,Sys.Nt)';
xt0 = in(t7:t8);

% Call at Vehicle-level time step
if mod(t,Vehr.DT) == 0

 % Inputs to Vehr controller
 Vehr.x0 = x_pred(Vehr.Sys_Vs);
 Vehr.Pin = Pin;
 Vehr.xt = xt;
 Vehr.xlow0 = x_pred(Vehr.xf);
 % Call controller
 Vehr.Time = t;
 [Vehr] = Call_Level_1_Controller(Vehr, plot_, time);
 % Upsample trajectories to be used by lower level controllers
 [Pin_V,xt_V,Pfull_V,x_V,xdot_V] = Rate_Transition(Vehr,S1r);
 % Reinitialize index used by lower level controller
 i_S = 0;
end
% Call at System-level time step
if mod(t,S1r.DT) == 0
 % Increment index used to select values from upper level trajectories
 i_S = i_S+1;
 % Inputs to S1r controller
 S1r.x0 = x_pred(S1r.Sys_Vs);
 S1r.Pin = Pin_V(:,i_S:i_S+S1r.horizon-1);
 S1r.xt = x_V([4 3],i_S:i_S+S1r.horizon); % Vertices 11 and 7
 S1r.xdotDes = xdot_V([1],i_S:i_S+S1r.horizon-1);
 S1r.PoutDes = Pfull_V([8 9],i_S:i_S+S1r.horizon-1);
 S1r.xlowDes = Vehr.xlowDes([1 2 7]); % Vertices 3, 4, and 10
 S1r.xlow0 = Vehr.xlowDes([5 6]); % Vertices 8 and 9
 % Call controller

 179

 S1r.Time = t;
 [S1r] = Call_Level_i_Controller(S1r, plot_, time);
 % Upsample trajectories to be used by lower level controllers
 [Pin_S1,xt_S1,Pfull_S1,x_S1,xdot_S1] = Rate_Transition(S1r,SS1);
 % Inputs to S2r controller
 S2r.x0 = x_pred(S2r.Sys_Vs);
 S2r.Pin = Pfull_V([8 9],i_S:i_S+S2r.horizon-1);
 S2r.xt = xt_V(:,i_S:i_S+S2r.horizon); % Vertices xt1 and xt2
 S2r.xdotDes = xdot_V([2 3 4],i_S:i_S+S2r.horizon-1);
 S2r.PoutDes = Pfull_V([13 18],i_S:i_S+S2r.horizon-1);
 S2r.xlowDes = Vehr.xlowDes([3 4]); % Vertices 5 and 6
 S2r.xlow0 = Vehr.xlowDes([8]); % Vertex 12
 % Call controller
 S2r.Time = t;
 [S2r] = Call_Level_i_Controller(S2r, plot_, time);
 % Upsample trajectories to be used by lower level controllers
 [Pin_S2,xt_S2,Pfull_S2,x_S2,xdot_S2] = Rate_Transition(S2r,SS3);
 % Reinitialize index used by lower level controller
 i_SS = 0;
end
% Call at Subsystem-level time step
if mod(t,SS1.DT) == 0
 % Increment index used to select values from upper level trajectories
 i_SS = i_SS + 1;
 % Inputs to SS1 controller
 SS1.x0 = x_pred(SS1.Sys_Vs);
 SS1.Pin = Pin_S1(1,i_SS:i_SS+SS1.horizon-1);
 SS1.xt = [x_S1(4,i_SS:i_SS+SS1.horizon-1);...
 xt_S1(1,i_SS:i_SS+SS1.horizon-1)]; % Vertices 10 and 11
 SS1.xdotDes = xdot_S1([2],i_SS:i_SS+SS1.horizon-1);
 SS1.PoutDes = Pfull_S1([4 8],i_SS:i_SS+SS1.horizon-1);
 SS1.xlowDes = Vehr.xlowDes([5 6]); % Vertices 8 and 9
 % Call controller
 SS1.Time = t;
 [SS1] = Call_Level_N_Controller(SS1, plot_, time);
 % Inputs to SS2 controller
 SS2.x0 = x_pred(SS2.Sys_Vs);
 SS2.Pin = [Pin_S1(2,i_SS:i_SS+SS2.horizon-1);...
 Pfull_S1(4,i_SS:i_SS+SS2.horizon-1)];
 SS2.xt = xt_S1(2,i_SS:i_SS+SS2.horizon-1); % Vertex 7
 SS2.xdotDes = xdot_S1([1 3 4],i_SS:i_SS+SS2.horizon-1);
 SS2.PoutDes = Pfull_S1([9],i_SS:i_SS+SS2.horizon-1);
 SS2.xlowDes = 0;
 % Call controller
 SS2.Time = t;
 [SS2] = Call_Level_N_Controller(SS2, plot_, time);
 % Inputs to SS3 controller
 SS3.x0 = x_pred(SS3.Sys_Vs);
 SS3.Pin = [Pin_S2(1,i_SS:i_SS+SS3.horizon-1);...
 Pfull_S2(5,i_SS:i_SS+SS3.horizon-1)];
 SS3.xt = xt_S2(1,i_SS:i_SS+SS3.horizon-1); % Vertex xt1
 SS3.xdotDes = xdot_S2([1 2 5],i_SS:i_SS+SS3.horizon-1);
 SS3.PoutDes = Pfull_S2([4],i_SS:i_SS+SS3.horizon-1);
 SS3.xlowDes = 0;
 % Call controller

 180

 SS3.Time = t;
 [SS3] = Call_Level_N_Controller(SS3, plot_, time);
 % Inputs to SS4 controller
 SS4.x0 = x_pred(SS4.Sys_Vs);
 SS4.Pin = Pin_S2(2,i_SS:i_SS+SS4.horizon-1);
 SS4.xt = [x_S2(5,i_SS:i_SS+SS1.horizon-1);...
 xt_S2(2,i_SS:i_SS+SS1.horizon-1)]; % Vertices 11 and xt2
 SS4.xdotDes = xdot_S2([3 4],i_SS:i_SS+SS4.horizon-1);
 SS4.PoutDes = Pfull_S2([5 9],i_SS:i_SS+SS4.horizon-1);
 SS4.xlowDes = Vehr.xlowDes([8]); % Vertex 12
 % Call controller
 SS4.Time = t;
 [SS4] = Call_Level_N_Controller(SS4, plot_, time);
end
% Calculate the desired power flows
P1 = SS1.P(:,1) + SS1.K*(x0(SS1.Sys_Vs)-x_pred(SS1.Sys_Vs));
P2 = SS2.P(:,1) + SS2.K*(x0(SS2.Sys_Vs)-x_pred(SS2.Sys_Vs));
P3 = SS3.P(:,1) + SS3.K*(x0(SS3.Sys_Vs)-x_pred(SS3.Sys_Vs));
P4 = SS4.P(:,1) + SS4.K*(x0(SS4.Sys_Vs)-x_pred(SS4.Sys_Vs));
% Assemble the desired power flows
P_bar = [P1(1:4);P2(1:3);P1(5);P2(4);P3(1:4);P4(4);P4(1:3);P4(5)];
% Calculate the control input
u = inv(Sys.beta)*(P_bar-Sys.Mab'*[x0;xt0]);
% Assemble predicted nominal states at the next time step
x_pred = [SS2.x(1,2);SS3.x(1,2);SS1.x(1,2);SS2.x(2,2);SS3.x(2,2);...
 SS4.x(1,2);SS4.x(2,2);SS1.x(2,2);SS1.x(3,2);SS2.x(3,2);...
 SS3.x(3,2);SS4.x(3,2)];
% Output inputs and throttling variables
out = [u;Vehr.lambdas(:,1);Vehr.lambdat(:,1)];

end

A.29 Rate_Transition.m

function [Pin,xt,Pfull,x,xdot] = Rate_Transition(Upper,Lower)

% Determine Pin and xt over Lower-level prediction horizon based on
% values determined by the Upper-level controller
Pin = [];
xt = [];
% If signals are coming from the Vehicle level, calculate "throttled" values
if strcmp(Upper.Name,'Vehr')
 for i = 1:size(Upper.Pin,2)
 Pin = [Pin repmat(Upper.lambdas(:,i).*Upper.Pin(:,i),1,Upper.DT/Lower.DT)];
 xt = [xt repmat(Upper.lambdat(:,i).*Upper.xt(:,i),1,Upper.DT/Lower.DT)];
 end
 Pfull = [];
 for i = 1:size(Upper.P,2)
 P = Upper.T*Upper.P+Upper.Y*(Upper.lambdas.*Upper.Pin);
 Pfull = [Pfull repmat(P(:,i),1,Upper.DT/Lower.DT)];
 end
else
 for i = 1:size(Upper.Pin,2)
 Pin = [Pin repmat(Upper.Pin(:,i),1,Upper.DT/Lower.DT)];
 xt = [xt repmat(Upper.xt(:,i),1,Upper.DT/Lower.DT)];

 181

 end
 Pfull = [];
 for i = 1:size(Upper.P,2)
 P = Upper.T*Upper.P+Upper.Y*Upper.Pin;
 Pfull = [Pfull repmat(P(:,i),1,Upper.DT/Lower.DT)];
 end
end
% Determine state trajectory
x = [];
for i = 1:size(Upper.x,2)-1
 x = [x repmat(Upper.x(:,i),1,Upper.DT/Lower.DT)+...
 (Upper.x(:,i+1)-Upper.x(:,i))/(Upper.DT/Lower.DT)*...
 [0:Upper.DT/Lower.DT-1]];
end
% Determine rate of change of states
xdot = inv(diag(Upper.Caps))*(-Upper.M_upper*Pfull+Upper.D*Pin);

end

A.30 System.m

function out = System(in)

% Define persistent variables
persistent Sys

% Time
t = in(1);
% Load variables from work space
if t == 0
 Sys = evalin('base','Sys');
 Sys.x = Sys.x0;
end
% Length of input vectors
l_u = size(Sys.u0,1);
l_Pin = Sys.Ns;
l_xt = Sys.Nt;
l_DP = Sys.Ne;
l_DPin = Sys.Ns;
l_Dxt = Sys.Nt;
% Indices for each input vector
t1 = 2; t2 = t1+l_u-1;
t3 = t2+1; t4 = t3+l_Pin-1;
t5 = t4+1; t6 = t5+l_xt-1;
t7 = t6+1; t8 = t7+l_DP-1;
t9 = t8+1; t10 = t9+l_DPin-1;
t11 = t10+1; t12 = t11+l_Dxt-1;
% Define inputs
Sys.u = in(t1:t2);
Sys.Pin = in(t3:t4);
Sys.xt = in(t5:t6);
Sys.DP = in(t7:t8);
Sys.DPin = in(t9:t10);
Sys.Dxt = in(t11:t12);
% System state at next time step

 182

Sys.x = Sys.A*Sys.x+Sys.B*Sys.beta*Sys.u+...
 Sys.V1*(Sys.Pin+Sys.DPin)+Sys.V2*(Sys.xt+Sys.Dxt)+Sys.V3*Sys.DP;
% Output system state at next time step
out = [Sys.x];

end

A.31 Dist_Three_Level.m

function out = Dist_Three_Level(in)

% Define persistent variables
persistent Vehr Sys xt Pin T_Pin T_xt

% Time
t = in(1);
% Load variables from work space
if t == 0
 Vehr = evalin('base','Vehr');
 Sys = evalin('base','Sys');

 Pin = 0*ones(Sys.Ns,Sys.Tsim+Vehr.DT*Vehr.horizon);
 xt = 0*ones(Sys.Nt,Sys.Tsim+Vehr.DT*(Vehr.horizon+1));

 Pin(1,201:300) = 3;
 Pin(2,401:500) = 3;
end
% Define time vector
if mod(t,Vehr.DT) == 0
 T_Pin = t+1:Vehr.DT:t+Vehr.DT*Vehr.horizon;
 T_xt = t+1:Vehr.DT:t+Vehr.DT*(Vehr.horizon+1);
end
% Output disturbance over prediction horizon and current values
if Sys.preview
 out = [reshape(Pin(:,T_Pin)',Sys.Ns*Vehr.horizon,1);...
 reshape(xt(:,T_xt)',Sys.Nt*(Vehr.horizon+1),1);...
 Pin(:,t+1);xt(:,t+1)];
else
 out =

[reshape(repmat(Pin(:,t+1),1,length(T_Pin))',Sys.Ns*Vehr.horizon,1);...

reshape(repmat(xt(:,t+1),1,length(T_xt))',Sys.Nt*(Vehr.horizon+1),1);...
 Pin(:,t+1);xt(:,t+1)];
end

end

