
Circle 2

Growing Objects

We made our way into the second Circle, here live the gluttons.

Let’s look at three ways of doing the same task of creating a sequence of
numbers. Method 1 is to grow the object:

vec <- numeric(0)

for(i in 1:n) vec <- c(vec, i)

Method 2 creates an object of the final length and then changes the values in
the object by subscripting:

vec <- numeric(n)

for(i in 1:n) vec[i] <- i

Method 3 directly creates the final object:

vec <- 1:n

Table 2.1 shows the timing in seconds on a particular (old) machine of these
three methods for a selection of values of n. The relationships for varying n are
all roughly linear on a log-log scale, but the timings are drastically different.

You may wonder why growing objects is so slow. It is the computational
equivalent of suburbanization. When a new size is required, there will not be

Table 2.1: Time in seconds of methods to create a sequence.

n grow subscript colon operator

1000 0.01 0.01 .00006
10,000 0.59 0.09 .0004
100,000 133.68 0.79 .005

1,000,000 18,718 8.10 .097

12

CIRCLE 2. GROWING OBJECTS

enough room where the object is; so it needs to move to a more open space.
Then that space will be too small, and it will need to move again. It takes a lot
of time to move house. Just as in physical suburbanization, growing objects can
spoil all of the available space. You end up with lots of small pieces of available
memory, but no large pieces. This is called fragmenting memory.

A more common—and probably more dangerous—means of being a glutton
is with rbind. For example:

my.df <- data.frame(a=character(0), b=numeric(0))

for(i in 1:n) {
my.df <- rbind(my.df, data.frame(a=sample(letters, 1),

b=runif(1)))

}
Probably the main reason this is more common is because it is more likely that
each iteration will have a different number of observations. That is, the code is
more likely to look like:

my.df <- data.frame(a=character(0), b=numeric(0))

for(i in 1:n) {
this.N <- rpois(1, 10)

my.df <- rbind(my.df, data.frame(a=sample(letters,

this.N, replace=TRUE), b=runif(this.N)))

}
Often a reasonable upper bound on the size of the final object is known. If so,
then create the object with that size and then remove the extra values at the
end. If the final size is a mystery, then you can still follow the same scheme,
but allow for periodic growth of the object.

current.N <- 10 * n

my.df <- data.frame(a=character(current.N),

b=numeric(current.N))

count <- 0

for(i in 1:n) {
this.N <- rpois(1, 10)

if(count + this.N > current.N) {
old.df <- my.df

current.N <- round(1.5 * (current.N + this.N))

my.df <- data.frame(a=character(current.N),

b=numeric(current.N))

my.df[1:count,] <- old.df[1:count,]

}
my.df[count + 1:this.N,] <- data.frame(a=sample(letters,

this.N, replace=TRUE), b=runif(this.N))

count <- count + this.N

}
my.df <- my.df[1:count,]

13

CIRCLE 2. GROWING OBJECTS

Figure 2.1: The giants by Sandro Botticelli.

Often there is a simpler approach to the whole problem—build a list of pieces
and then scrunch them together in one go.

my.list <- vector(’list’, n)

for(i in 1:n) {
this.N <- rpois(1, 10)

my.list[[i]] <- data.frame(a=sample(letters, this.N

replace=TRUE), b=runif(this.N))

}
my.df <- do.call(’rbind’, my.list)

There are ways of cleverly hiding that you are growing an object. Here is an
example:

hit <- NA

for(i in 1:one.zillion) {
if(runif(1) < 0.3) hit[i] <- TRUE

}

Each time the condition is true, hit is grown.
Eliminating the growth of objects can be one of the easiest and most dra-

matic ways of speeding up R code.

14

CIRCLE 2. GROWING OBJECTS

If you use too much memory, R will complain. The key issue is that R holds
all the data in RAM. This is a limitation if you have huge datasets. The up-side
is flexibility—in particular, R imposes no rules on what data are like.

You can get a message, all too familiar to some people, like:

Error: cannot allocate vector of size 79.8 Mb.

This is often misinterpreted along the lines of: “I have xxx gigabytes of memory,
why can’t R even allocate 80 megabytes?” It is because R has already allocated
a lot of memory successfully. The error message is about how much memory R
was going after at the point where it failed.

The user who has seen this message logically asks, “What can I do about
it?” There are some easy answers:

1. Don’t be a glutton by using bad programming constructs.

2. Get a bigger computer.

3. Reduce the problem size.

If you’ve obeyed the first answer and can’t follow the second or third, then
your alternatives are harder. One is to restart the R session, but this is often
ineffective.

Another of those hard alternatives is to explore where in your code the
memory is growing. One method (on at least one platform) is to insert lines
like:

cat(’point 1 mem’, memory.size(), memory.size(max=TRUE), ’\n’)

throughout your code. This shows the memory that R currently has and the
maximum amount R has had in the current session.

However, probably a more efficient and informative procedure would be to
use Rprof with memory profiling. Rprof also profiles time use.

Another way of reducing memory use is to store your data in a database and
only extract portions of the data into R as needed. While this takes some time
to set up, it can become quite a natural way to work.

A “database” solution that only uses R is to save (as in the save function)
objects in individual files, then use the files one at a time. So your code using
the objects might look something like:

for(i in 1:n) {
objname <- paste(’obj.’, i, sep=’’)

load(paste(objname, ’.rda’, sep=’’))

the obj <- get(objname)

rm(list=objname)

use the obj

}

15

CIRCLE 2. GROWING OBJECTS

Are tomorrow’s bigger computers going to solve the problem? For some people,
yes—their data will stay the same size and computers will get big enough to
hold it comfortably. For other people it will only get worse—more powerful
computers means extraordinarily larger datasets. If you are likely to be in this
latter group, you might want to get used to working with databases now.

If you have one of those giant computers, you may have the capacity to
attempt to create something larger than R can handle. See:

?’Memory-limits’

for the limits that are imposed.

16

