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1 The output channels n3 of CNNT and CNNG

In Section 5 of the paper, we set the output feature maps extracted from the
sub-network CNNT and CNNG as one single channel (n3 = 1). Here we test three
cases of using multiple channels. We show the results in Table 1. We observe that
using multi-dimensional feature maps does not yield improved performance. As
a result, we choose n3 = 1 in our model for computational efficiency.

Table 1. Quantitative results for depth image upsampling (RMSE in centimeters) of
using different filter numbers in the 3rd layer of CNNT and CNNG.

n3 1 16 32 64

upscale = 8 6.20 6.40 6.24 6.34

2 Applications of Joint Image Filtering

In this section, we present more results on processing visual signals in various
types of domains and compare with the state-of-the-art approaches. Specifically,
we validate the effectiveness of our model in seven computer vision and compu-
tational photography tasks as shown in Table 2.

Table 2. Applications of joint image filtering

Application Figures Source of test images

(a) Joint depth map upsampling Figure 1 – Figure 3 [1,2,3,4,5]

(b) Chromaticity map upsampling Figure 4 – Figure 5 [6]

(c) Saliency map upsampling Figure 6 – Figure 9 [7]

(d) Cross-modal noise reduction Figure 10 – Figure 11 [8]

(e) Inverse halftoning Figure 12 – Figure 13 [9]

(f) Tone mapping Figure 14 – Figure 15 [10]

(g) Texture removal Figure 16 – Figure 17 [11]
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Joint depth map upsampling: We compare our approach against several
state-of-the-art joint image filters for depth map upsampling. Among them,
JBU [12] and GF [13] are generic methods for joint image upsampling while
TGV [14] and Park [15] are algorithms specifically designed for image guided
depth upsampling.

Chromaticity map upsampling: We compare our approach with three dif-
ferent upsampling methods including Bicubic, GF [13], Ham [16] as well as the
direct solution of [6] on the high-resolution image. Figure 4–5 show that our
results in general have less color bleeding artifacts. We also report the combined
running time, which consists of two parts: (1) solving chromaticity solution map
on a low-resolution image [6] and (2) upsampling using joint image filter.

Saliency map upsampling: We show an application of joint image filter for
saliency map upsampling. We first obtain the low-resolution saliency map us-
ing [7] on the low-resolution image (10×) and then upsample it to the original
spatial resolution. We compare our approach with Bicubic, GF [13], Ham [16] as
well as the direct solution of [7] on the high-resolution image. Figure 6–9 show
that our results in general could better preserve the boundary under a large
upsampling scale.

Cross-modal noise reduction: Cross-modal images can be obtained by d-
ifferent sensors or under different imaging settings, such as Flash/Non-Flash,
RGB/NIR. We compare our filter with GF [13], Ham [16] and a specialized
cross-modality image restoration algorithm [8] on filtering cross-modality image
pairs. In Figure 10-11, compared with GF [13] and Ham [16], we show that our
filter could successfully suppress noises while preserving main salient structures.

Inverse halftoning: We compare our results with that from RGF [17], L0 [18],
Xu [19] and a specific algorithm for reconstructing halftoned images Kopf [9].
We show in Figure 12-13 that our filter can preserve edges well and achieve
comparable performance compared to the state-of-the-art techniques.

Tone mapping: In Figure 14-15, we use our joint filter as an edge-preserving
filter for tone mapping. We show that we achieve comparable results compared
with BF [20] and GF [13].

Texture removal: We apply the proposed deep joint filter for removing tex-
tures. We show in Figure 16-17 that our filter is capable of removing textures
and rendering comparable results with RGF [17], L0 [18], Xu [11] and Ham [16].
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(a) Guidance (b) GT depth (c) Bicubic (d) GF [13]

(e) JBU [12] (f) Park [15] (g) TGV [14] (h) Ours

Fig. 1. Qualitative comparisons of joint depth map upsampling results (8×) from the
NYU v2 dataset [2].
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(a) Guidance (b) GT depth (c) Bicubic (d) GF [13]

(e) JBU [12] (f) Park [15] (g) TGV [14] (h) Ours

Fig. 2. Qualitative comparisons of joint depth map upsampling results (8×) from the
dataset [1] .
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(a) Guidance (b) GT depth (c) Bicubic (d) GF [13]

(e) JBU [12] (f) Park [15] (g) TGV [14] (h) Ours

Fig. 3. Qualitative comparisons of joint depth map upsampling results (8×) from the
SUN RGBD dataset [3].
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(a) Scribbles (b) Levin [6] (6.4s) (c) Bicubic (1.1s)

(d) GF [13] (1.3s) (e) Ham [16] (22.3s) (f) Ours (2.1s)

Fig. 4. Qualitative comparisons of chromaticity map upsampling (4×) .



Deep Joint Image Filtering 7

(a) Scribbles (b) Levin [6] (11.2s) (c) Bicubic (1.8s)

(a) GF [13] (2.1s) (b) Ham [16] (26.8s) (c) Ours (3.6s)

Fig. 5. Qualitative comparisons of chromaticity map upsampling (4×).
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(a) Input (guidance) (b) Saliency map (10×) [7] (c) Bicubic

(d) GF [13] (e) Ham [16] (f) Ours

Fig. 6. Visual comparisons of saliency map upsampling results (10×).

(a) Input (guidance) (b) Saliency map (10×) [7] (c) Bicubic

(d) GF [13] (e) Ham [16] (f) Ours

Fig. 7. Visual comparisons of saliency map upsampling results (10×).
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(a) Input (guidance) (b) Saliency map (10×) [7] (c) Bicubic

(d) GF [13] (e) Ham [16] (f) Ours

Fig. 8. Visual comparisons of saliency map upsampling results (10×).

(a) Input (guidance) (b) Saliency map (10×) [7] (c) Bicubic

(d) GF [13] (e) Ham [16] (f) Ours

Fig. 9. Visual comparisons of saliency map upsampling results (10×).
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(a) Guidance Flash (b) Target Non-Flash

(c) GF [13] (d) Restore [8]

(e) Ham [16] (f) Ours

Fig. 10. Comparisons of noise reduction results using a pair of Flash/Non-Flash im-
ages.
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(a) Guidance NIR (b) Target RGB

(c) GF [13] (d) Restore [8]

(e) Ham [16] (f) Ours

Fig. 11. Comparisons of noise reduction results using a pair of RGB/NIR images.
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(a) Input (b) RGF [17]

(c) L0 [18] λ = 0.015 (d) Xu [19] λ = 0.005, σ = 3

(e) Kopf [9] (f) Ours

Fig. 12. Comparisons of inverse halftoning results.
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(a) Input (b) RGF [17]

(c) L0 [18] λ = 0.04 (d) Xu [19] λ = 0.005, σ = 3

(e) Kopf [9] (f) Ours

Fig. 13. Comparisons of inverse halftoning results.
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(a) BF [20] (b) GF [13] (c) Ours

Fig. 14. Visual comparisons of tone mapping results on the memorial HRD image.

(a) BF [20] (b) GF [13] (c) Ours

Fig. 15. Visual comparisons of tone mapping results on the bigFogMap HRD image.
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(a) Input (b) RGF [17] (c) L0 [18] λ = 0.04

(d) Xu [19] λ = 0.01, σ = 0.5 (e) Ham [16], λ = 30 (f) Ours

Fig. 16. Visual comparisons of texture removal methods.

(a) Input (b) RGF [17] (c) L0 [18] λ = 0.04

(d) Xu [19] λ = 0.01, σ = 0.5 (e) Ham [16], λ = 30 (f) Ours

Fig. 17. Visual comparisons of texture removal methods.
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